Department of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Mississippi , University, Mississippi 38677, United States.
Biochemistry. 2014 Mar 18;53(10):1586-94. doi: 10.1021/bi401523b. Epub 2014 Mar 6.
DNA sequences with the potential to form secondary structures such as i-motifs (iMs) and G-quadruplexes (G4s) are abundant in the promoters of several oncogenes and, in some instances, are known to regulate gene expression. Recently, iM-forming DNA strands have also been employed as functional units in nanodevices, ranging from drug delivery systems to nanocircuitry. To understand both the mechanism of gene regulation by iMs and how to use them more efficiently in nanotechnological applications, it is essential to have a thorough knowledge of factors that govern their conformational states and stabilities. Most of the prior work to characterize the conformational dynamics of iMs have been done with iM-forming synthetic constructs like tandem (CCT)n repeats and in standard dilute buffer systems. Here, we present a systematic study on the consequences of epigenetic modifications, molecular crowding, and degree of hydration on the stabilities of an iM-forming sequence from the promoter of the c-myc gene. Our results indicate that 5-hydroxymethylation of cytosines destabilized the iMs against thermal and pH-dependent melting; contrarily, 5-methylcytosine modification stabilized the iMs. Under molecular crowding conditions (PEG-300, 40% w/v), the thermal stability of iMs increased by ∼10 °C, and the pKa was raised from 6.1 ± 0.1 to 7.0 ± 0.1. Lastly, the iM's stability at varying degrees of hydration in 1,2-dimethoxyethane, 2-methoxyethanol, ethylene glycol, 1,3-propanediol, and glycerol cosolvents indicated that the iMs are stabilized by dehydration because of the release of water molecules when folded. Our results highlight the importance of considering the effects of epigenetic modifications, molecular crowding, and the degree of hydration on iM structural dynamics. For example, the incorporation of 5-methylycytosines and 5-hydroxymethlycytosines in iMs could be useful for fine-tuning the pH- or temperature-dependent folding/unfolding of an iM. Variations in the degree of hydration of iMs may also provide an additional control of the folded/unfolded state of iMs without having to change the pH of the surrounding matrix.
具有形成茎环结构(iMs)和 G-四链体(G4s)潜力的 DNA 序列在多个癌基因的启动子中大量存在,在某些情况下,已知它们可以调节基因表达。最近,形成 iM 的 DNA 链也被用作纳米器件中的功能单元,从药物输送系统到纳米电路。为了理解 iM 对基因调控的机制以及如何在纳米技术应用中更有效地利用它们,必须深入了解控制其构象状态和稳定性的因素。之前表征 iM 构象动力学的大部分工作都是使用形成 iM 的合成构建体(如串联(CCT)n 重复序列)和标准稀释缓冲系统完成的。在这里,我们对来自 c-myc 基因启动子的形成 iM 的序列的表观遗传修饰、分子拥挤和水合度对其稳定性的影响进行了系统研究。我们的结果表明,胞嘧啶的 5-羟甲基化使 iMs 对抗热和 pH 依赖性解链变得不稳定;相反,5-甲基胞嘧啶修饰使 iMs 稳定。在分子拥挤条件下(PEG-300,40%w/v),iMs 的热稳定性提高了约 10°C,pKa 从 6.1±0.1 提高到 7.0±0.1。最后,在 1,2-二甲氧基乙烷、2-甲氧基乙醇、乙二醇、1,3-丙二醇和甘油共溶剂中不同水合度下 iM 的稳定性表明,由于折叠时水分子的释放,iM 脱水稳定。我们的结果强调了考虑表观遗传修饰、分子拥挤和水合度对 iM 结构动力学影响的重要性。例如,在 iM 中掺入 5-甲基胞嘧啶和 5-羟甲基胞嘧啶可以用于微调 iM 的 pH 或温度依赖性折叠/解折叠。iM 水合度的变化也可以提供对 iM 折叠/未折叠状态的额外控制,而无需改变周围基质的 pH。