Takahashi Shuntaro, Ghosh Saptarshi, Trajkovski Marko, Ohyama Tatsuya, Plavec Janez, Sugimoto Naoki
FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf500.
Intercalated motif (i-motif) tetraplex DNA plays a crucial role in gene expression and diseases. However, due to the limited number of i-motif binding proteins in human cells, the chemical mechanisms regulating i-motifs within cell remain currently unknown. Thus, molecular environment should have a main factor to control i-motif formation and functions in cells. Here, we systematically investigated the stability and functions of i-motif DNAs by using various polyethylene glycols (PEGs) and oligoethylene glycols (OEGs) that mimicked diverse cellular crowding environments. We found that the human telomere i-motif was significantly stabilized by PEGs and OEGs having six or more ethylene glycol units, whereas it was destabilized by those having less than six units. As these stabilization effects coincided with the drastic changes in hypochromicity by i-motif helixes, we quantitatively validated these effects through changes in solution properties and by assessing the twisting of the tetraplex structure using nuclear magnetic resonance (NMR) and molecular dynamics simulations. Furthermore, cosolute-induced twisting dynamics controlled by different cosolutes changed the activation energy barrier of replication by a twofold magnitude along the i-motif-forming DNAs. Our findings indicate that regulatory mechanisms underlying the biological roles of i-motifs across different cellular phases may exist by molecular environments.
插入基序(i-基序)四链体DNA在基因表达和疾病中起着至关重要的作用。然而,由于人类细胞中i-基序结合蛋白的数量有限,目前细胞内调节i-基序的化学机制尚不清楚。因此,分子环境应该是控制细胞中i-基序形成和功能的主要因素。在这里,我们通过使用各种聚乙二醇(PEG)和低聚乙二醇(OEG)模拟不同的细胞拥挤环境,系统地研究了i-基序DNA的稳定性和功能。我们发现,具有六个或更多乙二醇单元的PEG和OEG能显著稳定人类端粒i-基序,而具有少于六个单元的PEG和OEG则会使其不稳定。由于这些稳定作用与i-基序螺旋引起的减色效应的剧烈变化相一致,我们通过溶液性质的变化以及使用核磁共振(NMR)和分子动力学模拟评估四链体结构的扭曲,对这些效应进行了定量验证。此外,由不同共溶质控制的共溶质诱导的扭曲动力学使沿i-基序形成DNA的复制活化能垒改变了两倍。我们的研究结果表明,分子环境可能存在跨不同细胞阶段i-基序生物学作用的调控机制。