Ohue Masahito, Matsuzaki Yuri, Shimoda Takehiro, Ishida Takashi, Akiyama Yutaka
BMC Proc. 2013 Dec 20;7(Suppl 7):S6. doi: 10.1186/1753-6561-7-S7-S6.
Elucidation of protein-protein interaction (PPI) networks is important for understanding disease mechanisms and for drug discovery. Tertiary-structure-based in silico PPI prediction methods have been developed with two typical approaches: a method based on template matching with known protein structures and a method based on de novo protein docking. However, the template-based method has a narrow applicable range because of its use of template information, and the de novo docking based method does not have good prediction performance. In addition, both of these in silico prediction methods have insufficient precision, and require validation of the predicted PPIs by biological experiments, leading to considerable expenditure; therefore, PPI prediction methods with greater precision are needed.
We have proposed a new structure-based PPI prediction method by combining template-based prediction and de novo docking prediction. When we applied the method to the human apoptosis signaling pathway, we obtained a precision value of 0.333, which is higher than that achieved using conventional methods (0.231 for PRISM, a template-based method, and 0.145 for MEGADOCK, a non-template-based method), while maintaining an F-measure value (0.285) comparable to that obtained using conventional methods (0.296 for PRISM, and 0.220 for MEGADOCK).
Our consensus method successfully predicted a PPI network with greater precision than conventional template/non-template methods, which may thus reduce the cost of validation by laboratory experiments for confirming novel PPIs from predicted PPIs. Therefore, our method may serve as an aid for promoting interactome analysis.
阐明蛋白质-蛋白质相互作用(PPI)网络对于理解疾病机制和药物发现至关重要。基于三级结构的计算机模拟PPI预测方法已经通过两种典型方法得以开发:一种基于与已知蛋白质结构的模板匹配的方法,以及一种基于从头蛋白质对接的方法。然而,基于模板的方法由于其对模板信息的使用而适用范围狭窄,并且基于从头对接的方法没有良好的预测性能。此外,这两种计算机模拟预测方法的精度都不足,并且需要通过生物学实验对预测的PPI进行验证,这导致了相当大的支出;因此,需要具有更高精度的PPI预测方法。
我们通过结合基于模板的预测和从头对接预测,提出了一种新的基于结构的PPI预测方法。当我们将该方法应用于人类细胞凋亡信号通路时,我们获得了0.333的精度值,高于使用传统方法所达到的精度值(基于模板的方法PRISM为0.231,非基于模板的方法MEGADOCK为0.145),同时保持了与使用传统方法所获得的F值(PRISM为0.296,MEGADOCK为0.220)相当的F值(0.285)。
我们的共识方法成功地以比传统模板/非模板方法更高的精度预测了一个PPI网络,这可能因此降低通过实验室实验从预测的PPI中确认新的PPI的验证成本。因此,我们的方法可能有助于促进相互作用组分析。