Suppr超能文献

一种使用系统发生替代模型预测蛋白质-蛋白质相互作用位点的新方法。

A novel method for protein-protein interaction site prediction using phylogenetic substitution models.

机构信息

Department of Biological Sciences, College of Science, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Proteins. 2012 Jan;80(1):126-41. doi: 10.1002/prot.23169. Epub 2011 Oct 12.

Abstract

Protein-protein binding events mediate many critical biological functions in the cell. Typically, functionally important sites in proteins can be well identified by considering sequence conservation. However, protein-protein interaction sites exhibit higher sequence variation than other functional regions, such as catalytic sites of enzymes. Consequently, the mutational behavior leading to weak sequence conservation poses significant challenges to the protein-protein interaction site prediction. Here, we present a phylogenetic framework to capture critical sequence variations that favor the selection of residues essential for protein-protein binding. Through the comprehensive analysis of diverse protein families, we show that protein binding interfaces exhibit distinct amino acid substitution as compared with other surface residues. On the basis of this analysis, we have developed a novel method, BindML, which utilizes the substitution models to predict protein-protein binding sites of protein with unknown interacting partners. BindML estimates the likelihood that a phylogenetic tree of a local surface region in a query protein structure follows the substitution patterns of protein binding interface and nonbinding surfaces. BindML is shown to perform well compared to alternative methods for protein binding interface prediction. The methodology developed in this study is very versatile in the sense that it can be generally applied for predicting other types of functional sites, such as DNA, RNA, and membrane binding sites in proteins.

摘要

蛋白质-蛋白质结合事件在细胞中介导许多关键的生物学功能。通常,通过考虑序列保守性,可以很好地识别蛋白质中功能重要的位点。然而,蛋白质-蛋白质相互作用位点的序列变化比其他功能区域(如酶的催化位点)更高。因此,导致弱序列保守的突变行为给蛋白质-蛋白质相互作用位点的预测带来了重大挑战。在这里,我们提出了一个系统发育框架,以捕捉有利于选择对蛋白质结合至关重要的残基的关键序列变化。通过对各种蛋白质家族的综合分析,我们表明蛋白质结合界面与其他表面残基相比表现出不同的氨基酸取代。在此分析的基础上,我们开发了一种新的方法 BindML,该方法利用取代模型来预测具有未知相互作用伙伴的蛋白质的蛋白质-蛋白质结合位点。与其他蛋白质结合界面预测方法相比,BindML 的表现要好得多。本研究中开发的方法在通用性方面非常出色,因为它可以普遍应用于预测其他类型的功能位点,如 DNA、RNA 和蛋白质中的膜结合位点。

相似文献

引用本文的文献

6
Modeling disordered protein interactions from biophysical principles.基于生物物理原理对无序蛋白质相互作用进行建模。
PLoS Comput Biol. 2017 Apr 10;13(4):e1005485. doi: 10.1371/journal.pcbi.1005485. eCollection 2017 Apr.
10
Algorithmic approaches to protein-protein interaction site prediction.蛋白质-蛋白质相互作用位点预测的算法方法。
Algorithms Mol Biol. 2015 Feb 15;10:7. doi: 10.1186/s13015-015-0033-9. eCollection 2015.

本文引用的文献

2
Homomeric protein complexes: evolution and assembly.同源蛋白复合物:进化与组装。
Biochem Soc Trans. 2010 Aug;38(4):879-82. doi: 10.1042/BST0380879.
4
The Universal Protein Resource (UniProt) in 2010.2010 年的通用蛋白质资源(UniProt)。
Nucleic Acids Res. 2010 Jan;38(Database issue):D142-8. doi: 10.1093/nar/gkp846. Epub 2009 Oct 20.
7
Identifying protein domains with the Pfam database.使用Pfam数据库鉴定蛋白质结构域。
Curr Protoc Bioinformatics. 2008 Sep;Chapter 2:2.5.1-2.5.17. doi: 10.1002/0471250953.bi0205s23.
10
PI2PE: protein interface/interior prediction engine.PI2PE:蛋白质界面/内部预测引擎。
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W357-62. doi: 10.1093/nar/gkm231. Epub 2007 May 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验