Suppr超能文献

通过网络传播识别疾病相关基因。

Identifying disease associated genes by network propagation.

作者信息

Qian Yu, Besenbacher Søren, Mailund Thomas, Schierup Mikkel Heide

出版信息

BMC Syst Biol. 2014;8 Suppl 1(Suppl 1):S6. doi: 10.1186/1752-0509-8-S1-S6. Epub 2014 Jan 24.

Abstract

BACKGROUND

Genome-wide association studies have identified many individual genes associated with complex traits. However, pathway and network information have not been fully exploited in searches for genetic determinants, and including this information may increase our understanding of the underlying biology of common diseases.

RESULTS

In this study, we propose a framework to address this problem in a principled way, with the underlying hypothesis that complex disease operates through multiple connected genes. Associations inferred from GWAS are translated into prior scores for vertices in a protein-protein interaction network, and these scores are propagated through the network. Permutation is used to select genes that are guilty-by-association and thus consistently obtain high scores after network propagation. We apply the approach to data of Crohn's disease and call candidate genes that have been reported by other independent GWAS, but not in the analysed data set. A prediction model based on these candidate genes show good predictive power as measured by Area Under the Receiver Operating Curve (AUC) in 10 fold cross-validations.

CONCLUSIONS

Our network propagation method applied to a genome-wide association study increases association findings over other approaches.

摘要

背景

全基因组关联研究已经确定了许多与复杂性状相关的单个基因。然而,在寻找遗传决定因素的过程中,通路和网络信息尚未得到充分利用,纳入这些信息可能会增进我们对常见疾病潜在生物学机制的理解。

结果

在本研究中,我们提出了一个框架来有原则地解决这个问题,其潜在假设是复杂疾病通过多个相互连接的基因起作用。从全基因组关联研究推断出的关联被转化为蛋白质-蛋白质相互作用网络中顶点的先验分数,并且这些分数在网络中传播。通过置换来选择那些因关联而有罪的基因,因此在网络传播后始终获得高分。我们将该方法应用于克罗恩病的数据,并调用了其他独立全基因组关联研究报告的但不在分析数据集中的候选基因。基于这些候选基因的预测模型在10折交叉验证中,通过受试者工作特征曲线下面积(AUC)衡量显示出良好的预测能力。

结论

我们应用于全基因组关联研究的网络传播方法比其他方法增加了关联发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8afe/4080512/3be5e35bb6aa/1752-0509-8-S1-S6-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验