Proteome Sci. 2013 Nov 7;11(Suppl 1):S20. doi: 10.1186/1477-5956-11-S1-S20.
Protein interaction networks (PINs) are known to be useful to detect protein complexes. However, most available PINs are static, which cannot reflect the dynamic changes in real networks. At present, some researchers have tried to construct dynamic networks by incorporating time-course (dynamic) gene expression data with PINs. However, the inevitable background noise exists in the gene expression array, which could degrade the quality of dynamic networkds. Therefore, it is needed to filter out contaminated gene expression data before further data integration and analysis.
Firstly, we adopt a dynamic model-based method to filter noisy data from dynamic expression profiles. Then a new method is proposed for identifying active proteins from dynamic gene expression profiles. An active protein at a time point is defined as the protein the expression level of whose corresponding gene at that time point is higher than a threshold determined by a standard variance involved threshold function. Furthermore, a noise-filtered active protein interaction network (NF-APIN) is constructed. To demonstrate the efficiency of our method, we detect protein complexes from the NF-APIN, compared with those from other dynamic PINs.
A dynamic model based method can effectively filter out noises in dynamic gene expression data. Our method to compute a threshold for determining the active time points of noise-filtered genes can make the dynamic construction more accuracy and provide a high quality framework for network analysis, such as protein complex prediction.
蛋白质相互作用网络(PINs)已被证明可用于检测蛋白质复合物。然而,大多数可用的 PIN 是静态的,无法反映真实网络中的动态变化。目前,一些研究人员试图通过将时程(动态)基因表达数据与 PINs 相结合来构建动态网络。然而,基因表达阵列中存在不可避免的背景噪声,这可能会降低动态网络的质量。因此,在进一步进行数据集成和分析之前,需要过滤掉受污染的基因表达数据。
首先,我们采用基于动态模型的方法从动态表达谱中过滤噪声数据。然后提出了一种从动态基因表达谱中识别活性蛋白的新方法。在一个时间点上的活性蛋白被定义为其相应基因在该时间点的表达水平高于由标准方差相关阈值函数确定的阈值的蛋白。此外,构建了一个噪声过滤的活性蛋白相互作用网络(NF-APIN)。为了证明我们方法的效率,我们从 NF-APIN 中检测蛋白质复合物,与其他动态 PIN 中的蛋白质复合物进行比较。
基于动态模型的方法可以有效地滤除动态基因表达数据中的噪声。我们用于计算噪声过滤基因的活性时间点的阈值的方法可以使动态构建更加准确,并为网络分析(如蛋白质复合物预测)提供高质量的框架。