Suppr超能文献

基于药物-靶点相互作用网络推断与药物副作用相关的蛋白质结构域

Inferring protein domains associated with drug side effects based on drug-target interaction network.

作者信息

Iwata Hiroaki, Mizutani Sayaka, Tabei Yasuo, Kotera Masaaki, Goto Susumu, Yamanishi Yoshihiro

出版信息

BMC Syst Biol. 2013;7 Suppl 6(Suppl 6):S18. doi: 10.1186/1752-0509-7-S6-S18. Epub 2013 Dec 13.

Abstract

BACKGROUND

Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions.

RESULTS

In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains.

CONCLUSION

The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.

摘要

背景

药物的大多数表型效应都涉及药物与其靶蛋白之间的相互作用,然而,我们对药物 - 靶标相互作用的分子机制的了解非常有限。近代药物科学中具有挑战性的问题之一是确定控制药物 - 靶标相互作用的潜在分子特征。

结果

在本文中,我们基于药物 - 靶标相互作用网络,对药物副作用与蛋白质结构域之间的相关性进行了系统分析,我们将其称为“药物基因组特征”。我们检测在已知药物 - 靶标相互作用中共同出现的药物副作用和蛋白质结构域,这通过使用具有稀疏模型的分类器得以实现。结果表明,推断出的药物基因组特征可用于预测潜在的药物 - 靶标相互作用。我们还讨论了药物基因组特征的优缺点,并与作为药物化学亚结构与蛋白质结构域之间关联的化学基因组特征进行了比较。

结论

推断出的副作用 - 结构域关联网络有望用于估计不同蛋白质家族的常见药物副作用以及特定蛋白质结构域的特征性药物副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e663/4029543/ea74dbc3a83a/1752-0509-7-S6-S18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验