Suppr超能文献

基于全局优化从药物-靶点相互作用推断化学基因组学特征

Global optimization-based inference of chemogenomic features from drug-target interactions.

作者信息

Zu Songpeng, Chen Ting, Li Shao

机构信息

MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China and.

MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Bioinformatics. 2015 Aug 1;31(15):2523-9. doi: 10.1093/bioinformatics/btv181. Epub 2015 Mar 29.

Abstract

MOTIVATION

Gaining insight into chemogenomic drug-target interactions, such as those involving the substructures of synthetic drugs and protein domains, is important in fragment-based drug discovery and drug repositioning. Previous studies evaluated the interactions locally, thereby ignoring the competitive effects of different substructures or domains, but this could lead to high false-positive estimation, calling for a computational method that presents more predictive power.

RESULTS

A statistical model, termed Global optimization-based InFerence of chemogenomic features from drug-Target interactions, or GIFT, is proposed herein to evaluate substructure-domain interactions globally such that all substructure-domain contributions to drug-target interaction are analyzed simultaneously. Combinations of different chemical substructures were included since they may function as one unit. When compared to previous methods, GIFT showed better interpretive performance, and performance for the recovery of drug-target interactions was good. Among 53 known drug-domain interactions, 81% were accurately predicted by GIFT. Eighteen of the top 100 predicted combined substructure-domain interactions had corresponding drug-target structures in the Protein Data Bank database, and 15 out of the 18 had been proved. GIFT was then implemented to predict substructure-domain interactions based on drug repositioning. For example, the anticancer activities of tazarotene, adapalene, acitretin and raloxifene were identified. In summary, GIFT is a global chemogenomic inference approach and offers fresh insight into drug-target interactions.

摘要

动机

深入了解化学基因组药物-靶点相互作用,例如涉及合成药物亚结构和蛋白质结构域的相互作用,在基于片段的药物发现和药物重新定位中至关重要。以往的研究在局部评估这些相互作用,从而忽略了不同亚结构或结构域的竞争效应,但这可能导致高假阳性估计,因此需要一种具有更强预测能力的计算方法。

结果

本文提出了一种统计模型,称为基于全局优化的药物-靶点相互作用化学基因组特征推断(Global optimization-based InFerence of chemogenomic features from drug-Target interactions,简称GIFT),用于全局评估亚结构-结构域相互作用,以便同时分析所有亚结构-结构域对药物-靶点相互作用的贡献。由于不同化学亚结构的组合可能作为一个整体发挥作用,因此将其纳入考虑。与以往方法相比,GIFT表现出更好的解释性能,并且在恢复药物-靶点相互作用方面表现良好。在53种已知的药物-结构域相互作用中,GIFT准确预测了81%。预测的前100个组合亚结构-结构域相互作用中有18个在蛋白质数据库(Protein Data Bank)中有相应的药物-靶点结构,其中18个中有15个已得到证实。然后利用GIFT基于药物重新定位预测亚结构-结构域相互作用。例如,确定了他扎罗汀、阿达帕林、阿维A和雷洛昔芬的抗癌活性。总之,GIFT是一种全局化学基因组推断方法,为药物-靶点相互作用提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验