ERATO Minato Project, Japan Science and Technology Agency, Sapporo 060-0814, Japan.
Bioinformatics. 2012 Sep 15;28(18):i487-i494. doi: 10.1093/bioinformatics/bts412.
Drug effects are mainly caused by the interactions between drug molecules and their target proteins including primary targets and off-targets. Identification of the molecular mechanisms behind overall drug-target interactions is crucial in the drug design process.
We develop a classifier-based approach to identify chemogenomic features (the underlying associations between drug chemical substructures and protein domains) that are involved in drug-target interaction networks. We propose a novel algorithm for extracting informative chemogenomic features by using L(1) regularized classifiers over the tensor product space of possible drug-target pairs. It is shown that the proposed method can extract a very limited number of chemogenomic features without loosing the performance of predicting drug-target interactions and the extracted features are biologically meaningful. The extracted substructure-domain association network enables us to suggest ligand chemical fragments specific for each protein domain and ligand core substructures important for a wide range of protein families.
Softwares are available at the supplemental website.
yamanishi@bioreg.kyushu-u.ac.jp
Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/l1binary/ .
药物的作用主要是由药物分子与其靶蛋白(包括主要靶标和非靶标)之间的相互作用引起的。识别药物-靶标相互作用网络背后的分子机制在药物设计过程中至关重要。
我们开发了一种基于分类器的方法来识别化学生物特征(药物化学结构和蛋白质结构域之间的潜在关联),这些特征与药物-靶标相互作用网络有关。我们提出了一种新的算法,通过使用 L(1)正则化分类器在可能的药物-靶对张量积空间中提取信息丰富的化学生物特征。结果表明,所提出的方法可以提取数量非常有限的化学生物特征,而不会降低预测药物-靶相互作用的性能,并且提取的特征具有生物学意义。提取的亚结构-结构域关联网络使我们能够针对每个蛋白质结构域建议特定的配体化学片段,并针对广泛的蛋白质家族建议配体核心结构。
软件可在补充网站上获得。
yamanishi@bioreg.kyushu-u.ac.jp
数据集和所有结果均可在 http://cbio.ensmp.fr/~yyamanishi/l1binary/ 获得。