Tabei Yasuo, Kotera Masaaki, Sawada Ryusuke, Yamanishi Yoshihiro
RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
School of Engineering, Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
BMC Syst Biol. 2019 Apr 5;13(Suppl 2):39. doi: 10.1186/s12918-019-0691-1.
Characterization of drug-protein interaction networks with biological features has recently become challenging in recent pharmaceutical science toward a better understanding of polypharmacology.
We present a novel method for systematic analyses of the underlying features characteristic of drug-protein interaction networks, which we call "drug-protein interaction signatures" from the integration of large-scale heterogeneous data of drugs and proteins. We develop a new efficient algorithm for extracting informative drug-protein interaction signatures from the integration of large-scale heterogeneous data of drugs and proteins, which is made possible by space-efficient representations for fingerprints of drug-protein pairs and sparsity-induced classifiers.
Our method infers a set of drug-protein interaction signatures consisting of the associations between drug chemical substructures, adverse drug reactions, protein domains, biological pathways, and pathway modules. We argue the these signatures are biologically meaningful and useful for predicting unknown drug-protein interactions and are expected to contribute to rational drug design.
在当代药物科学领域,为了更好地理解多药理学,对具有生物学特征的药物 - 蛋白质相互作用网络进行表征近来已变得具有挑战性。
我们提出了一种用于系统分析药物 - 蛋白质相互作用网络潜在特征的新方法,通过整合药物和蛋白质的大规模异构数据,我们将其称为“药物 - 蛋白质相互作用特征”。我们开发了一种新的高效算法,用于从药物和蛋白质的大规模异构数据整合中提取信息丰富的药物 - 蛋白质相互作用特征,这通过药物 - 蛋白质对指纹的空间高效表示和稀疏诱导分类器得以实现。
我们的方法推断出一组药物 - 蛋白质相互作用特征,其由药物化学子结构、药物不良反应、蛋白质结构域、生物途径和途径模块之间的关联组成。我们认为这些特征具有生物学意义,有助于预测未知的药物 - 蛋白质相互作用,并有望为合理药物设计做出贡献。