Suppr超能文献

一种计算呼吸系统 NO 参数的理论模型的实用方法。

A practical approach to the theoretical models to calculate NO parameters of the respiratory system.

机构信息

Centre for Research and Development, Uppsala University/County Council of Gävleborg, SE 801 88 Gävle, Sweden. Department of Medical Sciences, Lung Medicine and Allergology, Uppsala University, Sweden.

出版信息

J Breath Res. 2014 Mar;8(1):016002. doi: 10.1088/1752-7155/8/1/016002. Epub 2014 Feb 24.

Abstract

Expired nitric oxide (NO) is used as a biomarker in different respiratory diseases. The recommended flow rate of 50 mL s⁻¹ (F(E)NO₀.₀₅) does not reveal from where in the lung NO production originated. Theoretical models of NO transfer from the respiratory system, linear or nonlinear approaches, have therefore been developed and applied. These models can estimate NO from distal lung (alveolar NO) and airways (bronchial flux). The aim of this study was to show the limitation in exhaled flow rate for the theoretical models of NO production in the respiratory system, linear and nonlinear models. Subjects (n = 32) exhaled at eight different flow rates between 10-350 mL s⁻¹ for the theoretical protocols. Additional subjects (n = 32) exhaled at tree flow rates (20, 100 and 350 mL s⁻¹) for the clinical protocol. When alveolar NO is calculated using high flow rates with the linear model, correction for axial back diffusion becomes negligible, -0.04 ppb and bronchial flux enhanced by 1.27. With Högman and Meriläinen algorithm (nonlinear model) the corrections factors can be understood to be embedded, and the flow rates to be used are ≤20, 100 and ≥350 mL s⁻¹. Applying these flow rates in a clinical setting any F(E)NO can be calculated necessitating fewer exhalations. Hence, measured F(E)NO₀.₀₅ 12.9 (7.2-18.7) ppb and calculated 12.9 (6.8-18.7) ppb. In conclusion, the only possibility to avoid inconsistencies between research groups is to use the measured NO values as such in modelling, and apply tight quality control to accuracies in both NO concentration and exhaled flow measurements.

摘要

过期的一氧化氮(NO)被用作不同呼吸道疾病的生物标志物。推荐的 50mL/s(F(E)NO₀.₀₅)流速并不能揭示NO 产生的部位。因此,已经开发并应用了NO 从呼吸系统转移的理论模型,包括线性或非线性方法。这些模型可以从远端肺(肺泡 NO)和气道(气道通量)估计 NO。本研究旨在展示在呼吸系统中理论模型的呼气流量对 NO 产生的限制,线性和非线性模型。受试者(n=32)以 10-350mL/s 的 8 个不同流速呼出,用于理论方案。额外的受试者(n=32)以 3 种流速(20、100 和 350mL/s)呼出,用于临床方案。当使用线性模型以高流速计算肺泡 NO 时,轴向反向扩散的校正变得可以忽略不计,为-0.04ppb,并且气道通量增加 1.27。使用 Högman 和 Meriläinen 算法(非线性模型),校正因子可以被理解为嵌入其中,并且可以使用的流速应≤20、100 和≥350mL/s。在临床环境中应用这些流速,可以计算任何 F(E)NO,从而减少呼气次数。因此,测量的 F(E)NO₀.₀₅为 12.9(7.2-18.7)ppb,计算的为 12.9(6.8-18.7)ppb。总之,避免研究组之间不一致的唯一可能性是在建模中使用测量的 NO 值,并对 NO 浓度和呼气流量测量的准确性进行严格的质量控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验