Suppr超能文献

一种用于考虑空间相关性的空间滤波多层模型:在韩国自评健康状况中的应用。

A spatially filtered multilevel model to account for spatial dependency: application to self-rated health status in South Korea.

机构信息

Department of Geography Education, Korea University, Anam-dong, Seongbuk-gu, Seoul, Korea.

出版信息

Int J Health Geogr. 2014 Feb 27;13:6. doi: 10.1186/1476-072X-13-6.

Abstract

BACKGROUND

This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets.

METHODS

In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs.

RESULTS

The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study.

CONCLUSIONS

The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts.

摘要

背景

本研究旨在提出一种整合多层次模型和特征向量空间过滤方法的方法,并将其应用于韩国自评健康状况的案例研究。在许多先前的健康相关研究中,分别使用多层次模型和单水平空间回归。然而,这两种方法应该结合使用,因为这两种方法的目标在健康相关分析中都很重要。多层次模型可以同时分析影响健康结果的个体和社区因素。但是,当社区之间存在空间依赖性时,传统多层次模型的结果可能会产生误导。健康相关数据中的空间依赖性表明,附近社区的健康结果彼此之间更为相似,而不是与遥远社区的健康结果相似。空间回归模型可以通过建模空间依赖性来解决这个问题。本研究探讨了整合多层次模型和特征向量空间过滤的可能性,这是一种解决数据集空间依赖性的高级空间回归方法。

方法

在这个空间过滤的多层次模型中,特征向量作为额外的解释变量,用于解释社区层面误差中的未解释的空间依赖性。该规范解决了传统多层次模型无法解释空间依赖性的问题,从而产生更稳健的结果。

结果

研究结果表明,性别、就业状况、月家庭收入和感知压力水平与自评健康状况显著相关。居住在贫困程度低、医生与居民比例高的社区的居民往往报告更高的健康水平。与传统多层次模型相比,空间过滤的多层次模型提供了无偏估计,并提高了模型的解释能力,尽管在这个案例研究中,两个模型的参数符号和显著性水平没有变化。

结论

本文提出的综合方法是在多层次框架内理解自评健康状况的地理分布的有用工具。在未来的研究中,将空间过滤的多层次模型应用于其他数据集将有助于澄清两个模型之间的差异。预计这种综合方法在其他情况下也将优于传统模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59db/4123889/636dc1776c27/1476-072X-13-6-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验