Huck Volker, Schneider Matthias F, Gorzelanny Christian, Schneider Stefan W
Prof. Dr. Matthias F. Schneider, Biological Physics Group, Boston University, Department of Mechanical Engineering, 110 Cummington Street, Boston, MA 02215, USA, Tel.: +1 617 353 3951, Fax: +1 617 353 3951, E-mail:
Prof. Dr. Stefan W. Schneider, Department of Dermatology, Experimental Dermatology, Heidelberg University, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany, Tel: +49 621 383 6901, Fax:+49 621 383 6903, E-mail:
Thromb Haemost. 2014 Apr 1;111(4):598-609. doi: 10.1160/TH13-09-0800. Epub 2014 Feb 27.
The specific interactions of von Willebrand factor (VWF) with the vessel wall, platelets or other interfaces strongly depend on (a shear-induced) VWF activation. Shear flow has been shown to induce a conformational transition of VWF, but is modulated by its thermodynamic state (state-function relationship). The state in turn is determined by physical (e.g. vessel geometry), physico-chemical (e.g. pH) and molecular-biological (e.g. mutants, binding) factors. Combining established results with recent insights, we reconstruct VWF biology and its state-function relationship from endothelial cell release to final degradation in the human vasculature. After VWF secretion, endothelial-anchored and shear activated VWF multimers can rapidly interact with surrounding colloids, typically with platelets. Simultaneously, this VWF activation enables ADAMTS13 to cleave VWF multimers thereby limiting VWF binding capacity. The subsequent cell-surface dissociation leads to a VWF recoiling to a globular conformation, shielding from further degradation by ADAMTS13. High local concentrations of these soluble VWF multimers, transported to the downstream vasculature, are capable for an immediate reactivation and re-polymerisation initiating colloid-binding or VWF-colloid aggregation at the site of inflamed endothelium, vessel injuries or pathological high-shear areas. Focusing on these functional steps in the lifecycle of VWF, its qualitative and quantitative deficiencies in the different VWD types will facilitate more precise diagnostics and reliable risk stratification for prophylactic therapies. The underlying biophysical principles are of general character, which broadens prospective studies on the physiological and pathophysiological impact of VWF and VWF-associated diseases and beares hope for a more universal understanding of an entire class of phenomena.
血管性血友病因子(VWF)与血管壁、血小板或其他界面的特异性相互作用很大程度上取决于(剪切诱导的)VWF激活。剪切流已被证明可诱导VWF的构象转变,但其受热力学状态(状态-功能关系)调节。该状态又由物理因素(如血管几何形状)、物理化学因素(如pH值)和分子生物学因素(如突变体、结合)决定。结合已有的研究结果和最新见解,我们重建了VWF在人体脉管系统中从内皮细胞释放到最终降解的生物学过程及其状态-功能关系。VWF分泌后,内皮锚定且经剪切激活的VWF多聚体可迅速与周围胶体相互作用,通常是与血小板相互作用。同时,这种VWF激活使ADAMTS13能够切割VWF多聚体,从而限制VWF的结合能力。随后的细胞表面解离导致VWF回卷成球状构象,从而免受ADAMTS13的进一步降解。这些可溶性VWF多聚体的高局部浓度被转运至下游脉管系统,能够立即重新激活并重新聚合,在炎症内皮、血管损伤或病理性高剪切区域引发胶体结合或VWF-胶体聚集。关注VWF生命周期中的这些功能步骤,不同类型血管性血友病(VWD)中VWF的定性和定量缺陷将有助于更精确的诊断和预防性治疗的可靠风险分层。潜在的生物物理原理具有普遍性,这拓宽了对VWF及其相关疾病的生理和病理生理影响的前瞻性研究,并有望更全面地理解这一整类现象。