Suppr超能文献

SPOT-Seq-RNA:通过折叠识别和结合亲和力预测来预测蛋白质-RNA复合物结构和RNA结合功能。

SPOT-Seq-RNA: predicting protein-RNA complex structure and RNA-binding function by fold recognition and binding affinity prediction.

作者信息

Yang Yuedong, Zhao Huiying, Wang Jihua, Zhou Yaoqi

机构信息

School of Informatics, Indiana University Purdue University, Indianapolis, IN, USA.

出版信息

Methods Mol Biol. 2014;1137:119-30. doi: 10.1007/978-1-4939-0366-5_9.

Abstract

RNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional regulation. Computational methods have been developed separately for prediction of RBPs and RNA-binding residues by machine-learning techniques and prediction of protein-RNA complex structures by rigid or semiflexible structure-to-structure docking. Here, we describe a template-based technique called SPOT-Seq-RNA that integrates prediction of RBPs, RNA-binding residues, and protein-RNA complex structures into a single package. This integration is achieved by combining template-based structure-prediction software, SPARKS X, with binding affinity prediction software, DRNA. This tool yields reasonable sensitivity (46 %) and high precision (84 %) for an independent test set of 215 RBPs and 5,766 non-RBPs. SPOT-Seq-RNA is computationally efficient for genome-scale prediction of RBPs and protein-RNA complex structures. Its application to human genome study has revealed a similar sensitivity and ability to uncover hundreds of novel RBPs beyond simple homology. The online server and downloadable version of SPOT-Seq-RNA are available at http://sparks-lab.org/server/SPOT-Seq-RNA/.

摘要

RNA结合蛋白(RBPs)在RNA代谢和转录后调控中发挥着关键作用。人们已分别开发了多种计算方法,通过机器学习技术预测RBPs和RNA结合残基,并通过刚性或半柔性结构对结构对接预测蛋白质-RNA复合物结构。在此,我们描述了一种基于模板的技术,称为SPOT-Seq-RNA,它将RBPs、RNA结合残基和蛋白质-RNA复合物结构的预测整合到一个软件包中。这种整合是通过将基于模板的结构预测软件SPARKS X与结合亲和力预测软件DRNA相结合来实现的。对于由215个RBPs和5766个非RBPs组成的独立测试集,该工具具有合理的灵敏度(46%)和高精度(84%)。SPOT-Seq-RNA在计算上对于RBPs和蛋白质-RNA复合物结构的全基因组规模预测是高效的。它在人类基因组研究中的应用显示出类似的灵敏度,并且有能力发现数百种超越简单同源性的新型RBPs。SPOT-Seq-RNA的在线服务器和可下载版本可在http://sparks-lab.org/server/SPOT-Seq-RNA/获取。

相似文献

2
Prediction and validation of the unexplored RNA-binding protein atlas of the human proteome.
Proteins. 2014 Apr;82(4):640-7. doi: 10.1002/prot.24441. Epub 2013 Nov 22.
4
Computational Prediction of RNA-Binding Proteins and Binding Sites.
Int J Mol Sci. 2015 Nov 3;16(11):26303-17. doi: 10.3390/ijms161125952.
5
CLIPdb: a CLIP-seq database for protein-RNA interactions.
BMC Genomics. 2015 Feb 5;16(1):51. doi: 10.1186/s12864-015-1273-2.
6
RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
Methods Enzymol. 2015;558:465-493. doi: 10.1016/bs.mie.2015.02.007. Epub 2015 May 12.
7
Prediction of RNA binding sites in a protein using SVM and PSSM profile.
Proteins. 2008 Apr;71(1):189-94. doi: 10.1002/prot.21677.
8
SimiRa: A tool to identify coregulation between microRNAs and RNA-binding proteins.
RNA Biol. 2015;12(9):998-1009. doi: 10.1080/15476286.2015.1068496.
9
Prediction of RNA binding residues: an extensive analysis based on structure and function to select the best predictor.
PLoS One. 2014 Mar 21;9(3):e91140. doi: 10.1371/journal.pone.0091140. eCollection 2014.
10
Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.
PLoS One. 2014 May 2;9(5):e96694. doi: 10.1371/journal.pone.0096694. eCollection 2014.

引用本文的文献

1
DRBP-EDP: classification of DNA-binding proteins and RNA-binding proteins using ESM-2 and dual-path neural network.
NAR Genom Bioinform. 2025 May 19;7(2):lqaf058. doi: 10.1093/nargab/lqaf058. eCollection 2025 Jun.
2
3
RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes.
Comput Struct Biotechnol J. 2024 Apr 15;23:1631-1640. doi: 10.1016/j.csbj.2024.04.034. eCollection 2024 Dec.
6
How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms.
Mol Cell. 2020 Apr 2;78(1):9-29. doi: 10.1016/j.molcel.2020.03.011.
7
PredPRBA: Prediction of Protein-RNA Binding Affinity Using Gradient Boosted Regression Trees.
Front Genet. 2019 Aug 2;10:637. doi: 10.3389/fgene.2019.00637. eCollection 2019.
8
A structure-based model for the prediction of protein-RNA binding affinity.
RNA. 2019 Dec;25(12):1628-1645. doi: 10.1261/rna.071779.119. Epub 2019 Aug 8.
9
TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs.
Nucleic Acids Res. 2019 May 21;47(9):4406-4417. doi: 10.1093/nar/gkz203.

本文引用的文献

1
Prediction of RNA binding proteins comes of age from low resolution to high resolution.
Mol Biosyst. 2013 Oct;9(10):2417-25. doi: 10.1039/c3mb70167k.
2
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.
Cell. 2012 Jun 8;149(6):1393-406. doi: 10.1016/j.cell.2012.04.031. Epub 2012 May 31.
3
6
Computational methods for prediction of protein-RNA interactions.
J Struct Biol. 2012 Sep;179(3):261-8. doi: 10.1016/j.jsb.2011.10.001. Epub 2011 Oct 12.
8
DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking.
BMC Bioinformatics. 2011 Aug 18;12:348. doi: 10.1186/1471-2105-12-348.
9
A coarse-grained force field for Protein-RNA docking.
Nucleic Acids Res. 2011 Nov;39(21):9118-29. doi: 10.1093/nar/gkr636. Epub 2011 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验