Suppr超能文献

Characterization of conjugated polymer actuation under cerebral physiological conditions.

作者信息

Daneshvar Eugene Dariush, Smela Elisabeth

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Adv Healthc Mater. 2014 Jul;3(7):1026-35. doi: 10.1002/adhm.201300610. Epub 2014 Feb 24.

Abstract

Conjugated polymer actuators have potential use in implantable neural interface devices for modulating the position of electrode sites within brain tissue or guiding insertion of neural probes along curved trajectories. The actuation of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) is characterized to ascertain whether it can be employed in the cerebral environment. Microfabricated bilayer beams are electrochemically cycled at either 22 or 37 °C in aqueous NaDBS or in artificial cerebrospinal fluid (aCSF). Nearly all the ions in aCSF are exchanged into the PPy-the cations Na(+) , K(+) , Mg(2+) , Ca(2+) , as well as the anion PO4 (3-) ; Cl(-) is not present. Nevertheless, deflections in aCSF are comparable to those in NaDBS and they are monotonic with oxidation level: strain increases upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depends on temperature. Upon warming, the cyclic voltammograms show additional peaks and an increase of 70% in the consumed charge. Bending is, however, much less affected: strain increases somewhat (6%-13%) but remains monotonic, and deflections shift (up to 20%). These results show how the actuation environment must be taken into account, and demonstrate proof of concept for actuated implantable neural interfaces.

摘要

相似文献

1
Characterization of conjugated polymer actuation under cerebral physiological conditions.
Adv Healthc Mater. 2014 Jul;3(7):1026-35. doi: 10.1002/adhm.201300610. Epub 2014 Feb 24.
2
Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles.
Chemphyschem. 2014 Feb 3;15(2):293-301. doi: 10.1002/cphc.201300878. Epub 2014 Jan 20.
3
Effect of the electrolyte concentration and substrate on conducting polymer actuators.
Langmuir. 2014 Apr 8;30(13):3894-904. doi: 10.1021/la404353z. Epub 2014 Mar 24.
4
Concept of an artificial muscle design on polypyrrole nanofiber scaffolds.
PLoS One. 2020 May 11;15(5):e0232851. doi: 10.1371/journal.pone.0232851. eCollection 2020.
5
Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
Biomaterials. 2005 Jun;26(17):3511-9. doi: 10.1016/j.biomaterials.2004.09.037.
8
Control of neural stem cell survival by electroactive polymer substrates.
PLoS One. 2011 Apr 11;6(4):e18624. doi: 10.1371/journal.pone.0018624.
9
Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through MWNT incorporation.
J Mater Sci Mater Med. 2008 Apr;19(4):1625-9. doi: 10.1007/s10856-008-3376-7. Epub 2008 Jan 24.
10
Anisotropic growth of conducting polymers along heparin-modified surfaces.
Langmuir. 2007 Jul 31;23(16):8304-7. doi: 10.1021/la700716f. Epub 2007 Jun 27.

引用本文的文献

1
Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces.
Nat Mater. 2024 Jul;23(7):969-976. doi: 10.1038/s41563-024-01886-0. Epub 2024 Apr 26.
2
Soft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation.
Sci Adv. 2022 Aug 26;8(34):eabq2345. doi: 10.1126/sciadv.abq2345.
4
Update in facial nerve paralysis: tissue engineering and new technologies.
Curr Opin Otolaryngol Head Neck Surg. 2014 Aug;22(4):291-9. doi: 10.1097/MOO.0000000000000062.

本文引用的文献

1
"Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture).
Angew Chem Int Ed Engl. 2001 Jul 16;40(14):2581-2590. doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
2
Chronoamperometric study of conformational relaxation in PPy(DBS).
J Phys Chem B. 2009 Feb 5;113(5):1277-93. doi: 10.1021/jp8058245.
3
Cochlear implants: a remarkable past and a brilliant future.
Hear Res. 2008 Aug;242(1-2):3-21. doi: 10.1016/j.heares.2008.06.005. Epub 2008 Jun 22.
4
Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
Biomaterials. 2008 Aug-Sep;29(24-25):3393-9. doi: 10.1016/j.biomaterials.2008.04.047. Epub 2008 May 23.
5
Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4606-9. doi: 10.1109/IEMBS.2006.260528.
6
Polypyrrole-based conducting polymers and interactions with biological tissues.
J R Soc Interface. 2006 Dec 22;3(11):741-52. doi: 10.1098/rsif.2006.0141.
7
Design of a high-resolution optoelectronic retinal prosthesis.
J Neural Eng. 2005 Mar;2(1):S105-20. doi: 10.1088/1741-2560/2/1/012. Epub 2005 Feb 22.
8
Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
Biomaterials. 2005 Jun;26(17):3511-9. doi: 10.1016/j.biomaterials.2004.09.037.
10
Evaluation of biocompatibility of polypyrrole in vitro and in vivo.
J Biomed Mater Res A. 2004 Mar 1;68(3):411-22. doi: 10.1002/jbm.a.20065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验