Suppr超能文献

印度野牛(内洛尔牛)基因组预测的准确性。

Accuracy of genomic predictions in Bos indicus (Nellore) cattle.

机构信息

UNESP, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900, Brazil.

出版信息

Genet Sel Evol. 2014 Feb 27;46(1):17. doi: 10.1186/1297-9686-46-17.

Abstract

BACKGROUND

Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.

METHODS

Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.

RESULTS

Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.

CONCLUSIONS

Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.

摘要

背景

在热带系统中,那勒瑞斯牛在牛肉生产中起着重要作用,人们非常关注基因组选择是否有助于加速这个品种的生产和繁殖性能的遗传改良。我们展示了在一个婆罗门牛(那勒瑞斯牛)群体中实施基因组预测的首批结果。

方法

有影响力的公牛用 Illumina Bovine HD 芯片进行了基因分型,以评估体重和胴体性状、妊娠期、阴囊周长和两个选择指数的基因组预测能力。分析中使用了 685 个样本和 320238 个单核苷酸多态性(SNP)。采用前向预测方案预测基因组育种值(DGV)。在训练步骤中,对公牛的估计育种值(EBV)进行去回归(dEBV),并将其用作伪表型,使用四种方法估计标记效应:基因组 BLUP 加上或不加上剩余多基因效应(GBLUP20 和 GBLUP0)、混合模型(贝叶斯 C)和贝叶斯 LASSO(BLASSO)。基于测试组中 DGV 和 dEBV 之间的相关性,评估了基因组预测的经验准确性。

结果

基因组预测的准确性范围从 0.17(断奶时的脐部)到 0.74(育肥早熟)。在各性状中,贝叶斯回归模型(贝叶斯 C 和 BLASSO)比 GBLUP 更准确。平均经验准确性为 0.39(GBLUP0)、0.40(GBLUP20)和 0.44(贝叶斯 C 和 BLASSO)。贝叶斯 C 和 BLASSO 倾向于产生低估的预测值(即 dEBV 对 DGV 的回归斜率大于 1)。进一步的分析表明,对于基于基因组关系的主成分分析中确定的两个育种亚组之间 EBV 均值差异显著的性状,观察到高于预期的准确性。

结论

贝叶斯回归模型对于该群体未来的基因组选择应用具有重要意义,但需要进一步改进以减少其预测值的低估。需要对训练群体进行反复更新,以便能够准确预测年轻动物的遗传优势。证明了在婆罗门牛(那勒瑞斯牛)群体中应用基因组预测的技术可行性。需要进一步的研究,以便能够使用基因组信息进行具有成本效益的选择决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed87/4014866/555771080755/1297-9686-46-17-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验