Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA.
Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80521, USA.
Anim Genet. 2020 Mar;51(2):192-199. doi: 10.1111/age.12892. Epub 2020 Jan 7.
The objective of this study was to compare accuracies of different Bayesian regression models in predicting molecular breeding values for health traits in Holstein cattle. The dataset was composed of 2505 records reporting the occurrence of retained fetal membranes (RFM), metritis (MET), mastitis (MAST), displaced abomasum (DA), lameness (LS), clinical endometritis (CE), respiratory disease (RD), dystocia (DYST) and subclinical ketosis (SCK) in Holstein cows, collected between 2012 and 2014 in 16 dairies located across the US. Cows were genotyped with the Illumina BovineHD (HD, 777K). The quality controls for SNP genotypes were HWE P-value of at least 1 × 10 ; MAF greater than 0.01 and call rate greater than 0.95. The FImpute program was used for imputation of missing SNP markers. The effect of each SNP was estimated using the Bayesian Ridge Regression (BRR), Bayes A, Bayes B and Bayes Cπ methods. The prediction quality was assessed by the area under the curve, the prediction mean square error and the correlation between genomic breeding value and the observed phenotype, using a leave-one-out cross-validation technique that avoids iterative cross-validation. The highest accuracies of predictions achieved were: RFM [Bayes B (0.34)], MET [BRR (0.36)], MAST [Bayes B (0.55), DA [Bayes Cπ (0.26)], LS [Bayes A (0.12)], CE [Bayes A (0.32)], RD [Bayes Cπ (0.23)], DYST [Bayes A (0.35)] and SCK [Bayes Cπ (0.38)] models. Except for DA, LS and RD, the predictive abilities were similar between the methods. A strong relationship between the predictive ability and the heritability of the trait was observed, where traits with higher heritability achieved higher accuracy and lower bias when compared with those with low heritability. Overall, it has been shown that a high-density SNP panel can be used successfully to predict genomic breeding values of health traits in Holstein cattle and that the model of choice will depend mostly on the genetic architecture of the trait.
本研究旨在比较不同贝叶斯回归模型在预测荷斯坦奶牛健康性状分子育种值方面的准确性。该数据集由 2505 份记录组成,报告了 2012 年至 2014 年间在美国 16 个奶牛场发生的保留胎膜(RFM)、子宫内膜炎(MET)、乳腺炎(MAST)、真胃移位(DA)、跛行(LS)、临床子宫内膜炎(CE)、呼吸疾病(RD)、难产(DYST)和亚临床酮病(SCK)的荷斯坦奶牛的记录。奶牛用 Illumina BovineHD(HD,777K)进行基因分型。SNP 基因型的质量控制为 HWE P 值至少为 1×10-5;MAF 大于 0.01,调用率大于 0.95。使用 FImpute 程序对缺失 SNP 标记进行了插补。使用贝叶斯岭回归(BRR)、贝叶斯 A、贝叶斯 B 和贝叶斯 Cπ方法估计每个 SNP 的效应。使用留一交叉验证技术评估预测质量,该技术避免了迭代交叉验证,通过曲线下面积、预测均方误差和基因组育种值与观察表型之间的相关性来评估预测质量。实现的最高预测精度为:RFM[贝叶斯 B(0.34)]、MET[BRR(0.36)]、MAST[贝叶斯 B(0.55)]、DA[贝叶斯 Cπ(0.26)]、LS[贝叶斯 A(0.12)]、CE[贝叶斯 A(0.32)]、RD[贝叶斯 Cπ(0.23)]、DYST[贝叶斯 A(0.35)]和 SCK[贝叶斯 Cπ(0.38)]模型。除了 DA、LS 和 RD,这些方法之间的预测能力相似。观察到预测能力与性状遗传力之间存在很强的关系,具有较高遗传力的性状与具有较低遗传力的性状相比,准确性更高,偏差更小。总的来说,结果表明高密度 SNP 面板可成功用于预测荷斯坦奶牛健康性状的基因组育种值,选择的模型将主要取决于性状的遗传结构。