Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Nanotechnology. 2014 Mar 28;25(12):125705. doi: 10.1088/0957-4484/25/12/125705. Epub 2014 Feb 27.
Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.
基于纳米孔的测序技术为下一代分子检测和测序的快速、准确和经济高效的指纹技术的发展展示了巨大的潜力。我们提出了一种特定的基于多层石墨烯的纳米孔器件结构,用于识别单生物分子。通过检测分子或 DNA 碱基穿过纳米孔时的横向电流,可以实现分子检测和分析。为了提高整体信噪比和准确性,我们在单分子水平上实施了一种新的“多点互相关”技术,用于识别 DNA 碱基或其他分子。我们证明,每个纳米孔之间的互相关将大大增强每个分子的横向电流信号。我们对穿过多层石墨烯纳米孔系统的 DNA 碱基进行了第一性原理输运计算,以说明所提出的几何形状的优势。互相关函数的时间序列分析说明了该方法在提高信噪比方面的潜力。这项工作在使用固态技术实现单生物分子指纹识别方面迈出了重要的一步。