Koyanagi Yuko, Oi Yoshiyuki, Yamamoto Kiyofumi, Koshikawa Noriaki, Kobayashi Masayuki
From the Department of Anesthesiology (Y.K., Y.O.), and Department of Pharmacology (K.Y., N.K., M.K.), Nihon University School of Dentistry, Tokyo, Japan; Division of Immunology and Pathobiology (Y.K., Y.O.), and Division of Oral and Craniomaxillofacial Research (K.Y., N.K., M.K.), Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; and Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan (M.K.).
Anesthesiology. 2014 Jul;121(1):68-78. doi: 10.1097/ALN.0000000000000183.
Propofol facilitates γ-aminobutyric acid-mediated inhibitory synaptic transmission. In the cerebral cortex, γ-aminobutyric acidergic interneurons target both excitatory pyramidal cells (Pyr) and fast-spiking (FS) and non-FS interneurons. Therefore, the propofol-induced facilitation of inhibitory transmission results in a change in the balance of excitatory and inhibitory inputs to Pyr. However, it is still unknown how propofol modulates γ-aminobutyric acidergic synaptic transmission in each combination of Pyr and interneurons.
The authors examined whether propofol differentially regulates inhibitory postsynaptic currents (IPSCs) depending on the presynaptic and postsynaptic cell subtypes using multiple whole cell patch clamp recording from γ-aminobutyric acidergic interneurons and Pyr in rat insular cortex.
Propofol (10 μM) consistently prolonged decay kinetics of unitary IPSCs (uIPSCs) in all types of inhibitory connections without changing paired-pulse ratio of the second to first uIPSC amplitude or failure rate. The FS→Pyr connections exhibited greater enhancement of uIPSC charge transfer (2.2 ± 0.5 pC, n = 36) compared with that of FS→FS/non-FS connections (0.9 ± 0.2 pC, n = 37), whereas the enhancement of charge transfer in non-FS→Pyr (0.3 ± 0.1 pC, n = 15) and non-FS→FS/non-FS connections (0.2 ± 0.1 pC, n = 36) was smaller to those in FS→Pyr/FS/non-FS. Electrical synapses between FS pairs were not affected by propofol.
The principal inhibitory connections (FS→Pyr) are the most sensitive to propofol-induced facilitation of uIPSCs, which is likely mediated by postsynaptic mechanisms. This preferential uIPSC enhancement in FS→Pyr connections may result in suppressed neural activities of projection neurons, which in turn reduces excitatory outputs from cortical local circuits.
丙泊酚可促进γ-氨基丁酸介导的抑制性突触传递。在大脑皮层中,γ-氨基丁酸能中间神经元的靶细胞包括兴奋性锥体细胞(Pyr)以及快发放(FS)和非快发放中间神经元。因此,丙泊酚诱导的抑制性传递增强会导致Pyr兴奋性和抑制性输入平衡的改变。然而,丙泊酚如何调节Pyr与中间神经元各种组合中的γ-氨基丁酸能突触传递仍不清楚。
作者使用大鼠岛叶皮层γ-氨基丁酸能中间神经元和Pyr的多细胞全细胞膜片钳记录,研究丙泊酚是否根据突触前和突触后细胞亚型差异调节抑制性突触后电流(IPSCs)。
丙泊酚(10 μM)在所有类型的抑制性连接中均持续延长单个IPSCs(uIPSCs)的衰减动力学,而不改变第二个与第一个uIPSC幅度的配对脉冲比率或失败率。与FS→FS/非FS连接(0.9±0.2 pC,n = 37)相比,FS→Pyr连接的uIPSC电荷转移增强更大(2.2±0.5 pC,n = 36),而非FS→Pyr(0.3±0.1 pC,n = 15)和非FS→FS/非FS连接(0.2±0.1 pC,n = 36)的电荷转移增强比FS→Pyr/FS/非FS连接中的小。FS对之间的电突触不受丙泊酚影响。
主要抑制性连接(FS→Pyr)对丙泊酚诱导的uIPSCs增强最为敏感,这可能由突触后机制介导。FS→Pyr连接中这种优先的uIPSC增强可能导致投射神经元的神经活动受到抑制,进而减少皮质局部回路的兴奋性输出。