Lakhani Ronak, Vogel Kara R, Till Andreas, Liu Jingjing, Burnett Sarah F, Gibson K Michael, Subramani Suresh
Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
EMBO Mol Med. 2014 Apr;6(4):551-66. doi: 10.1002/emmm.201303356. Epub 2014 Feb 27.
In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA.
除了在胚胎神经发生和髓鞘形成中发挥关键作用外,γ-氨基丁酸(GABA)还是哺乳动物主要的抑制性神经递质。在酵母中,我们发现了GABA的一种新作用,即增强关键激酶Tor1的活性。GABA通过与哺乳动物激酶S6K1同源的Sch9抑制选择性自噬途径,即线粒体自噬和过氧化物酶体自噬,从而导致氧化应激,而这些都可以被Tor1抑制剂雷帕霉素缓解。为了在哺乳动物中证实这些过程,我们研究了琥珀酸半醛脱氢酶(SSADH)缺陷小鼠模型,该模型在中枢神经系统和其他组织中积累超生理水平的GABA。突变小鼠的大脑和肝脏中线粒体数量增加,这与线粒体自噬缺陷预期一致,并且线粒体形态异常。给这些小鼠施用雷帕霉素可降低mTOR活性,减少升高的线粒体数量,并使异常的抗氧化剂水平恢复正常。这些结果证实了GABA在细胞信号传导中的新作用,并突出了各种人类疾病(包括SSADH缺乏症以及其他以GABA水平升高为特征的疾病)中的潜在发病机制和治疗方法。