Kronman Achia, Joskowicz Leo
School of Eng. and Computer Science, The Hebrew Univ. of Jerusalem, Israel.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):206-13. doi: 10.1007/978-3-642-40763-5_26.
Volumetric image segmentation methods often produce delineations of anatomical structures and pathologies that require user modifications. We present a new method for the correction of segmentation errors. Given an initial geometrical mesh, our method semi automatically identifies the mesh vertices in erroneous regions with min-cut segmentation. It then deforms the mesh by correcting its vertex coordinates with Laplace deformation based on local geometrical properties. The key advantages of our method are that: (1) it supports fast user interaction on a single surface rendered 2D view; (2) its parameters values are fixed to the same value for all cases; (3) it is independent of the initial segmentation method, and; (4) it is applicable to a variety of anatomical structures and pathologies. Experimental evaluation on 44 initial segmentations of kidney and kidney vessels from CT scans show an improvement of 83% and 75% in the average surface distance and the volume overlap error between the initial and the corrected segmentations with respect to the ground-truth.
容积图像分割方法通常会生成需要用户修改的解剖结构和病变的轮廓。我们提出了一种用于校正分割错误的新方法。给定一个初始几何网格,我们的方法通过最小割分割半自动识别错误区域中的网格顶点。然后,基于局部几何属性,通过拉普拉斯变形校正其顶点坐标来使网格变形。我们方法的主要优点是:(1)它支持在单个表面渲染的二维视图上进行快速用户交互;(2)其参数值在所有情况下都固定为相同的值;(3)它独立于初始分割方法;(4)它适用于各种解剖结构和病变。对来自CT扫描的44个肾脏和肾血管初始分割的实验评估表明,相对于真实情况而言,初始分割和校正后分割之间的平均表面距离和体积重叠误差分别提高了83%和75%。