Institute of Physics, Optical Spectroscopy and Molecular Physics, Centre for Nanostructured Materials and Analytics (nanoMA), Technische Universität Chemnitz , 09107 Chemnitz, Germany.
ACS Nano. 2014 Apr 22;8(4):3506-21. doi: 10.1021/nn406562a. Epub 2014 Mar 7.
The photoluminescence (PL) of single emitters like semiconductor quantum dots (QDs) shows PL intermittency, often called blinking. We explore the PL intensities of single CdSe/ZnS QDs in polystyrene (PS), on polyvenylalcohol (PVA), and on silicon oxide (SiOx) by the change-point analysis (CPA). By this, we relate results from the macrotime (sub-ms to 1000 s) and the microtime (0.1-100 ns) range to discrete PL intensities. We conclude that the intensity selected "on"-times in the ms range correspond to only a few (discrete) switching times, while the PL decays in the ns range are multiexponential even with respect to the same selected PL intensity. Both types of relaxation processes depend systematically on the PL intensity in course of a blinking time trace. The overall distribution of on-times does not follow a power law contrary to what has often been reported but can be compiled into 3-4 characteristic on-times. The results can be explained by the recently suggested multiple recombination centers model. Additionally, we can identify a well-defined QD state with a very low PL intensity above the noise level, which we assign to the strongly quenched exciton state. We describe our findings by a model of a hierarchical sequence of hole and electron trapping. Blinking events are the consequence of slow switching processes among these states and depend on the physicochemical properties of the heterogeneous nanointerface of the QDs.
单发射器的光致发光(PL),如半导体量子点(QD),表现出 PL 间歇性,通常称为闪烁。我们通过变点分析(CPA)来研究聚苯乙烯(PS)、聚乙烯醇(PVA)和氧化硅(SiOx)上单个 CdSe/ZnS QD 的 PL 强度。通过这种方法,我们将宏观时间(亚毫秒到 1000 秒)和微观时间(0.1-100 纳秒)范围内的结果与离散的 PL 强度联系起来。我们得出结论,在毫秒范围内选择的“开”时间仅对应于少数(离散)开关时间,而在纳秒范围内的 PL 衰减即使对于相同的选择的 PL 强度也是多指数的。这两种类型的弛豫过程在闪烁时间轨迹的过程中都系统地依赖于 PL 强度。在时间范围内的总 ON 时间分布不遵循幂律,这与经常报道的情况相反,但可以分为 3-4 个特征 ON 时间。这些结果可以用最近提出的多复合中心模型来解释。此外,我们可以识别出一个具有非常低的 PL 强度的明确定义的 QD 状态,高于噪声水平,我们将其分配给强烈猝灭的激子状态。我们通过一个空穴和电子捕获的层次序列模型来描述我们的发现。闪烁事件是这些状态之间缓慢切换过程的结果,并取决于 QD 的非均相纳米界面的物理化学性质。