文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用纳米技术治疗癌症。

Harnessing nanotechnology for cancer treatment.

作者信息

Zhu Jiajun, Lee HaeJu, Huang Ruotong, Zhou Jianming, Zhang Jingjun, Yang Xiaoyi, Zhou Wenhan, Jiang Wangqing, Chen Shuying

机构信息

Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Front Bioeng Biotechnol. 2025 Jan 20;12:1514890. doi: 10.3389/fbioe.2024.1514890. eCollection 2024.


DOI:10.3389/fbioe.2024.1514890
PMID:39902172
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11788409/
Abstract

Nanotechnology has become a groundbreaking innovation force in cancer therapy, offering innovative solutions to the limitations of conventional treatments such as chemotherapy and radiation. By manipulating materials at the nanoscale, researchers have developed nanocarriers capable of targeted drug delivery, improving therapeutic efficacy while reducing systemic toxicity. Nanoparticles like liposomes, dendrimers, and polymeric nanomaterials have shown significant promise in delivering chemotherapeutic agents directly to tumor sites, enhancing drug bioavailability and minimizing damage to healthy tissues. In addition to drug delivery, with the utilization of tools such as quantum dots and nanosensors that enables more precise identification of cancer biomarkers, nanotechnology is also playing a pivotal role in early cancer detection and diagnosis. Furthermore, nanotechnology-based therapeutic strategies, including photothermal therapy, gene therapy and immunotherapy are offering novel ways to combat cancer by selectively targeting tumor cells and enhancing the immune response. Nevertheless, despite these progressions, obstacles still persist, particularly in the clinical translation of these technologies. Issues such as nanoparticle toxicity, biocompatibility, and the complexity of regulatory approval hinder the widespread adoption of nanomedicine in oncology. This review discusses different applications of nanotechnology in cancer therapy, highlighting its potential and the hurdles to its clinical implementation. Future research needs to concentrate on addressing these obstacles to unlock the full potential of nanotechnology in providing personalized, effective, and minimally invasive cancer treatments.

摘要

纳米技术已成为癌症治疗中一股具有开创性的创新力量,为化疗和放疗等传统治疗方法的局限性提供了创新解决方案。通过在纳米尺度上操控材料,研究人员开发出了能够进行靶向给药的纳米载体,在提高治疗效果的同时降低全身毒性。脂质体、树枝状大分子和聚合物纳米材料等纳米颗粒在将化疗药物直接递送至肿瘤部位、提高药物生物利用度以及将对健康组织的损害降至最低方面显示出了巨大潜力。除了药物递送,利用量子点和纳米传感器等工具能够更精确地识别癌症生物标志物,纳米技术在癌症早期检测和诊断中也发挥着关键作用。此外,基于纳米技术的治疗策略,包括光热疗法、基因疗法和免疫疗法,正通过选择性地靶向肿瘤细胞和增强免疫反应,为对抗癌症提供新方法。然而,尽管取得了这些进展,障碍仍然存在,特别是在这些技术的临床转化方面。纳米颗粒毒性、生物相容性以及监管审批的复杂性等问题阻碍了纳米医学在肿瘤学中的广泛应用。本文综述讨论了纳米技术在癌症治疗中的不同应用,强调了其潜力以及临床应用中的障碍。未来的研究需要集中精力解决这些障碍,以释放纳米技术在提供个性化、有效且微创的癌症治疗方面的全部潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/d2e338cee566/fbioe-12-1514890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/c7d118b080c9/fbioe-12-1514890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/800509e164bd/fbioe-12-1514890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/5b762f9d4bd2/fbioe-12-1514890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/90251802317f/fbioe-12-1514890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/d2e338cee566/fbioe-12-1514890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/c7d118b080c9/fbioe-12-1514890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/800509e164bd/fbioe-12-1514890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/5b762f9d4bd2/fbioe-12-1514890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/90251802317f/fbioe-12-1514890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec46/11788409/d2e338cee566/fbioe-12-1514890-g005.jpg

相似文献

[1]
Harnessing nanotechnology for cancer treatment.

Front Bioeng Biotechnol. 2025-1-20

[2]
Nanomaterials in the diagnosis and treatment of gastrointestinal tumors: New clinical choices and treatment strategies.

Mater Today Bio. 2025-4-19

[3]
Diabetology and Nanotechnology: A Compelling Combination.

Recent Pat Nanotechnol. 2025

[4]
Empowering lung cancer treatment: Harnessing the potential of natural phytoconstituent-loaded nanoparticles.

Phytother Res. 2024-8

[5]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[6]
Harnessing Nanotechnology: Emerging Strategies for Multiple Myeloma Therapy.

Biomolecules. 2024-1-9

[7]
Nanotechnology-based Approaches for Targeted Drug Delivery to the Small Intestine: Advancements and Challenges.

Curr Pharm Des. 2025-2-10

[8]
Precision arrows: Navigating breast cancer with nanotechnology siRNA.

Int J Pharm. 2024-9-5

[9]
Nanobiotechnology: traditional re-interpreting personalized medicine through targeted therapies and regenerative solutions.

Naunyn Schmiedebergs Arch Pharmacol. 2025-3-18

[10]
Nanotechnology: an evidence-based analysis.

Ont Health Technol Assess Ser. 2006

引用本文的文献

[1]
Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities.

Sci Rep. 2025-9-1

[2]
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives.

Pharmaceutics. 2025-8-6

[3]
Implants for fixation of intertrochanteric femoral fracture: a systematic review and network meta-analysis of randomized controlled trials.

BMC Musculoskelet Disord. 2025-8-25

[4]
DEEP lateral femoral notch sign is associated with lateral meniscus tear and non-spherical lateral femoral condyle in ACL deficient knee.

Eur J Orthop Surg Traumatol. 2025-8-16

[5]
Overcoming resistant cancerous tumors through combined photodynamic and immunotherapy (photoimmunotherapy).

Front Immunol. 2025-7-17

[6]
Molecular mechanisms underlying -derived nanovesicles induced ferroptosis in hepatocellular carcinoma: a dual-pathway analysis of lipid peroxidation and mitochondrial damage.

Front Pharmacol. 2025-6-26

本文引用的文献

[1]
Advances in Nanoparticles as Non-Viral Vectors for Efficient Delivery of CRISPR/Cas9.

Pharmaceutics. 2024-9-11

[2]
Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery.

Gels. 2024-8-14

[3]
An Overview of Nanoparticle-Based Delivery Platforms for mRNA Vaccines for Treating Cancer.

Vaccines (Basel). 2024-6-29

[4]
Recent Advancement of Nanotheranostics in Cancer Applications.

Curr Drug Deliv. 2024-5-29

[5]
Emergence of Quantum Dots as Innovative Tools for Early Diagnosis and Advanced Treatment of Breast Cancer.

ChemMedChem. 2024-8-19

[6]
Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer.

Sci Rep. 2024-5-2

[7]
Molecular mechanism of nanomaterials induced liver injury: A review.

World J Hepatol. 2024-4-27

[8]
Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review.

J Biomater Appl. 2024-7

[9]
Precision nanomedicine to treat non-small cell lung cancer.

Life Sci. 2024-6-1

[10]
Theranostic and Combined Approaches Exploiting Multifunctional Gold Nanoclusters in Tumoral Ecosystems: A Paradigm Shift in Precision Oncology.

Curr Radiopharm. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索