Zhu Jiajun, Lee HaeJu, Huang Ruotong, Zhou Jianming, Zhang Jingjun, Yang Xiaoyi, Zhou Wenhan, Jiang Wangqing, Chen Shuying
Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Shanghai Medical College, Fudan University, Shanghai, China.
Front Bioeng Biotechnol. 2025 Jan 20;12:1514890. doi: 10.3389/fbioe.2024.1514890. eCollection 2024.
Nanotechnology has become a groundbreaking innovation force in cancer therapy, offering innovative solutions to the limitations of conventional treatments such as chemotherapy and radiation. By manipulating materials at the nanoscale, researchers have developed nanocarriers capable of targeted drug delivery, improving therapeutic efficacy while reducing systemic toxicity. Nanoparticles like liposomes, dendrimers, and polymeric nanomaterials have shown significant promise in delivering chemotherapeutic agents directly to tumor sites, enhancing drug bioavailability and minimizing damage to healthy tissues. In addition to drug delivery, with the utilization of tools such as quantum dots and nanosensors that enables more precise identification of cancer biomarkers, nanotechnology is also playing a pivotal role in early cancer detection and diagnosis. Furthermore, nanotechnology-based therapeutic strategies, including photothermal therapy, gene therapy and immunotherapy are offering novel ways to combat cancer by selectively targeting tumor cells and enhancing the immune response. Nevertheless, despite these progressions, obstacles still persist, particularly in the clinical translation of these technologies. Issues such as nanoparticle toxicity, biocompatibility, and the complexity of regulatory approval hinder the widespread adoption of nanomedicine in oncology. This review discusses different applications of nanotechnology in cancer therapy, highlighting its potential and the hurdles to its clinical implementation. Future research needs to concentrate on addressing these obstacles to unlock the full potential of nanotechnology in providing personalized, effective, and minimally invasive cancer treatments.
纳米技术已成为癌症治疗中一股具有开创性的创新力量,为化疗和放疗等传统治疗方法的局限性提供了创新解决方案。通过在纳米尺度上操控材料,研究人员开发出了能够进行靶向给药的纳米载体,在提高治疗效果的同时降低全身毒性。脂质体、树枝状大分子和聚合物纳米材料等纳米颗粒在将化疗药物直接递送至肿瘤部位、提高药物生物利用度以及将对健康组织的损害降至最低方面显示出了巨大潜力。除了药物递送,利用量子点和纳米传感器等工具能够更精确地识别癌症生物标志物,纳米技术在癌症早期检测和诊断中也发挥着关键作用。此外,基于纳米技术的治疗策略,包括光热疗法、基因疗法和免疫疗法,正通过选择性地靶向肿瘤细胞和增强免疫反应,为对抗癌症提供新方法。然而,尽管取得了这些进展,障碍仍然存在,特别是在这些技术的临床转化方面。纳米颗粒毒性、生物相容性以及监管审批的复杂性等问题阻碍了纳米医学在肿瘤学中的广泛应用。本文综述讨论了纳米技术在癌症治疗中的不同应用,强调了其潜力以及临床应用中的障碍。未来的研究需要集中精力解决这些障碍,以释放纳米技术在提供个性化、有效且微创的癌症治疗方面的全部潜力。
Front Bioeng Biotechnol. 2025-1-20
Recent Pat Nanotechnol. 2025
Eur J Pharm Biopharm. 2015-6
Biomolecules. 2024-1-9
Int J Pharm. 2024-9-5
Naunyn Schmiedebergs Arch Pharmacol. 2025-3-18
Ont Health Technol Assess Ser. 2006
BMC Musculoskelet Disord. 2025-8-25
Eur J Orthop Surg Traumatol. 2025-8-16
Pharmaceutics. 2024-9-11
Vaccines (Basel). 2024-6-29
Curr Drug Deliv. 2024-5-29
World J Hepatol. 2024-4-27
J Biomater Appl. 2024-7
Life Sci. 2024-6-1