Han Renmin, Zhang Fa, Wan Xiaohua, Fernández Jose-Jesus, Sun Fei, Liu Zhiyong
Key Lab of Intelligent Information Processing and Advanced Computing Research Lab, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China.
Key Lab of Intelligent Information Processing and Advanced Computing Research Lab, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
J Struct Biol. 2014 Apr;186(1):167-80. doi: 10.1016/j.jsb.2014.02.011. Epub 2014 Feb 27.
In electron tomography, alignment accuracy is critical for high-resolution reconstruction. However, the automatic alignment of a tilt series without fiducial markers remains a challenge. Here, we propose a new alignment method based on Scale-Invariant Feature Transform (SIFT) for marker-free alignment. The method covers the detection and localization of interest points (features), feature matching, feature tracking and optimization of projection parameters. The proposed method implements a highly reliable matching strategy and tracking model to detect a huge number of feature tracks. Furthermore, an incremental bundle adjustment method is devised to tolerate noise data and ensure the accurate estimation of projection parameters. Our method was evaluated with a number of experimental data, and the results exhibit an improved alignment accuracy comparable with current fiducial marker alignment and subsequent higher resolution of tomography.
在电子断层扫描中,对准精度对于高分辨率重建至关重要。然而,在没有基准标记的情况下对倾斜序列进行自动对准仍然是一个挑战。在此,我们提出一种基于尺度不变特征变换(SIFT)的新对准方法,用于无标记对准。该方法涵盖兴趣点(特征)的检测与定位、特征匹配、特征跟踪以及投影参数的优化。所提出的方法实现了一种高度可靠的匹配策略和跟踪模型,以检测大量的特征轨迹。此外,还设计了一种增量束调整方法来容忍噪声数据并确保投影参数的准确估计。我们的方法通过大量实验数据进行了评估,结果显示对准精度有所提高,可与当前的基准标记对准相媲美,并随后实现更高分辨率的断层扫描。