斑块成分及治疗方案的研究进展:年度回顾。

Advances in the understanding of plaque composition and treatment options: year in review.

机构信息

Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York.

Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York.

出版信息

J Am Coll Cardiol. 2014 Apr 29;63(16):1604-16. doi: 10.1016/j.jacc.2014.01.042. Epub 2014 Feb 26.

Abstract

Atherosclerosis research has classically followed 2 intertwining lines of investigation concerning atherosclerosis as a local process (the "high-risk plaque") and as a systemic disease (the "high-risk patient"). Over time, the weight of attention has swung, like a pendulum, between these 2 related foci. With optimal medical therapy and attention to risk factors firmly established as fundamental aspects of management, in the past year, we have nevertheless perceived a shift in the pendulum toward renewed focus on the local plaque. We contend that this shift results from a convergence of major advances in understanding the biology of plaque progression, novel sophisticated invasive and noninvasive imaging modalities for the in vivo characterization of plaque composition and inflammation, and emerging data and technologies that have renewed interest in locally targeted interventions. Here, we review the dynamic and exciting progress that has occurred over the last 12 months in this arena, while acknowledging future work that remains to be done to refine and validate new imaging modalities and therapies.

摘要

动脉粥样硬化研究一直沿着两条相互交织的线索进行,一条涉及动脉粥样硬化作为局部过程(“高危斑块”),另一条涉及作为系统性疾病(“高危患者”)。随着时间的推移,关注的重点像钟摆一样在这两个相关焦点之间来回摆动。在过去的一年里,随着最佳药物治疗和对危险因素的关注被牢固确立为管理的基本方面,我们注意到钟摆又向重新关注局部斑块的方向移动。我们认为,这种转变是由于对斑块进展的生物学有了重大的认识,以及新型复杂的侵袭性和非侵袭性成像方式来对斑块成分和炎症进行体内特征描述,以及新兴的数据和技术使人们对局部靶向干预重新产生兴趣等多种因素的综合作用。在这里,我们回顾了过去 12 个月来在这一领域取得的激动人心的进展,同时也承认仍有未来的工作要做,以完善和验证新的成像方式和治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索