Suppr超能文献

用于慢性肾脏病心血管风险评估的血清生物标志物的机器学习分析

Machine learning analysis of serum biomarkers for cardiovascular risk assessment in chronic kidney disease.

作者信息

Forné Carles, Cambray Serafi, Bermudez-Lopez Marcelino, Fernandez Elvira, Bozic Milica, Valdivielso Jose M

机构信息

Biostatistics Unit, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida, Lleida, Spain.

Department of Basic Medical Sciences, University of Lleida, Lleida, Spain.

出版信息

Clin Kidney J. 2019 Aug 5;13(4):631-639. doi: 10.1093/ckj/sfz094. eCollection 2020 Aug.

Abstract

BACKGROUND

Chronic kidney disease (CKD) patients show an increased burden of atherosclerosis and high risk of cardiovascular events (CVEs). There are several biomarkers described as being associated with CVEs, but their combined effectiveness in cardiovascular risk stratification in CKD has not been tested. The objective of this work is to analyse the combined ability of 19 biomarkers associated with atheromatous disease in predicting CVEs after 4 years of follow-up in a subcohort of the NEFRONA study in individuals with different stages of CKD without previous CVEs.

METHODS

Nineteen putative biomarkers were quantified in 1366 patients (73 CVEs) and their ability to predict CVEs was ranked by random survival forest (RSF) analysis. The factors associated with CVEs were tested in Fine and Gray (FG) regression models, with non-cardiovascular death and kidney transplant as competing events.

RESULTS

RSF analysis detected several biomarkers as relevant for predicting CVEs. Inclusion of those biomarkers in an FG model showed that high levels of osteopontin, osteoprotegerin, matrix metalloproteinase-9 and vascular endothelial growth factor increased the risk for CVEs, but only marginally improved the discrimination obtained with classical clinical parameters: concordance index 0.744 (95% confidence interval 0.609-0.878) versus 0.723 (0.592-0.854), respectively. However, in individuals with diabetes treated with antihypertensives and lipid-lowering drugs, the determination of these biomarkers could help to improve cardiovascular risk estimates.

CONCLUSIONS

We conclude that the determination of four biomarkers in the serum of CKD patients could improve cardiovascular risk prediction in high-risk individuals.

摘要

背景

慢性肾脏病(CKD)患者的动脉粥样硬化负担增加,心血管事件(CVE)风险较高。有几种生物标志物被描述为与CVE相关,但它们在CKD心血管风险分层中的联合有效性尚未得到检验。本研究的目的是分析在NEFRONA研究的一个亚队列中,19种与动脉粥样硬化疾病相关的生物标志物在无既往CVE的不同阶段CKD个体中随访4年后预测CVE的联合能力。

方法

对1366例患者(73例发生CVE)的19种假定生物标志物进行定量,并通过随机生存森林(RSF)分析对其预测CVE的能力进行排名。在Fine和Gray(FG)回归模型中检验与CVE相关的因素,将非心血管死亡和肾移植作为竞争事件。

结果

RSF分析检测到几种与预测CVE相关的生物标志物。将这些生物标志物纳入FG模型显示,骨桥蛋白、骨保护素、基质金属蛋白酶-9和血管内皮生长因子水平升高会增加CVE风险,但仅略微改善了经典临床参数的辨别能力:一致性指数分别为0.744(95%置信区间0.609-0.878)和0.723(0.592-0.854)。然而,在接受抗高血压和降脂药物治疗的糖尿病个体中,这些生物标志物的测定有助于改善心血管风险评估。

结论

我们得出结论,测定CKD患者血清中的四种生物标志物可以改善高危个体的心血管风险预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/228c/7467598/8b2e9668a33e/sfz094f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验