Suppr超能文献

基于多光谱光声成像的斑块成分特征盲光谱解混。

Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging.

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands.

Department of Surgery, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, Eindhoven, the Netherlands.

出版信息

Sci Rep. 2023 Mar 13;13(1):4119. doi: 10.1038/s41598-023-31343-y.

Abstract

To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.

摘要

为了提高颈动脉斑块易损性的评估水平,对其组成进行全面的特征描述至关重要。多光谱光声成像(MSPAI)可以基于斑块的吸收光谱提供斑块成分的信息。然而,尽管已经开发出各种光谱解混方法来对不同的组织成分进行特征描述,但由于斑块的组成非常复杂和多样化,其分析仍然具有挑战性。在本研究中,我们采用了一种自适应分段凸多模型端元检测方法来识别颈动脉斑块的成分。此外,我们还通过调节系数矩阵及其与解混方法的协同作用,探讨了线性模型中成像波长的选择问题。我们使用斑块模拟体验证了我们的方法,并在 500 至 1300nm 的光谱范围内对颈动脉内膜切除术样本进行了离体 MSPAI,以识别用于易损性评估的斑块材料的主要光谱特征。成像后,对样本进行组织学分析以验证光声分解。结果表明,我们的方法可以对高度不均匀的生物样本进行光谱解混和分类,而无需进行广泛的荧光校正,从而能够识别出与评估斑块易损性相关的成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a25/10011570/5f7db27b0b18/41598_2023_31343_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验