Suppr超能文献

基于核糖开关调控的计算分析

Computational analysis of riboswitch-based regulation.

作者信息

Sun Eric I, Rodionov Dmitry A

机构信息

Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA.

Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia.

出版信息

Biochim Biophys Acta. 2014 Oct;1839(10):900-907. doi: 10.1016/j.bbagrm.2014.02.011. Epub 2014 Feb 28.

Abstract

Advances in computational analysis of riboswitches in the last decade have contributed greatly to our understanding of riboswitch regulatory roles and mechanisms. Riboswitches were originally discovered as part of the sequence analysis of the 5'-untranslated region of mRNAs in the hope of finding novel gene regulatory sites, and the existence of structural RNAs appeared to be a spurious phenomenon. As more riboswitches were discovered, they illustrated the diversity and adaptability of these RNA regulatory sequences. The fact that a chemically monotonous molecule like RNA can discern a wide range of substrates and exert a variety of regulatory mechanisms was subsequently demonstrated in diverse genomes and has hastened the development of sophisticated algorithms for their analysis and prediction. In this review, we focus on some of the computational tools for riboswitch detection and secondary structure prediction. The study of this simple yet efficient form of gene regulation promises to provide a more complete picture of a world that RNA once dominated and allows rational design of artificial riboswitches. This article is part of a Special Issue entitled: Riboswitches.

摘要

在过去十年中,核糖开关的计算分析取得了显著进展,极大地增进了我们对核糖开关调控作用和机制的理解。核糖开关最初是在对mRNA 5'非翻译区进行序列分析时被发现的,目的是寻找新的基因调控位点,而结构RNA的存在似乎是一种虚假现象。随着越来越多的核糖开关被发现,它们展现出了这些RNA调控序列的多样性和适应性。随后在各种基因组中证实,像RNA这样化学性质单一的分子能够识别多种底物并发挥多种调控机制,这加速了用于其分析和预测的复杂算法的开发。在这篇综述中,我们重点关注一些用于核糖开关检测和二级结构预测的计算工具。对这种简单而高效的基因调控形式的研究有望为RNA曾经主导的世界提供更完整的图景,并有助于合理设计人工核糖开关。本文是名为:核糖开关的特刊的一部分。

相似文献

1
Computational analysis of riboswitch-based regulation.
Biochim Biophys Acta. 2014 Oct;1839(10):900-907. doi: 10.1016/j.bbagrm.2014.02.011. Epub 2014 Feb 28.
2
Secondary structural entropy in RNA switch (Riboswitch) identification.
BMC Bioinformatics. 2015 Apr 28;16:133. doi: 10.1186/s12859-015-0523-2.
3
Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
Acc Chem Res. 2011 Dec 20;44(12):1329-38. doi: 10.1021/ar200039b. Epub 2011 May 26.
6
Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria.
PLoS One. 2017 Sep 5;12(9):e0184314. doi: 10.1371/journal.pone.0184314. eCollection 2017.
7
The dynamic nature of RNA as key to understanding riboswitch mechanisms.
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
8
Themes and variations in riboswitch structure and function.
Biochim Biophys Acta. 2014 Oct;1839(10):908-918. doi: 10.1016/j.bbagrm.2014.02.012. Epub 2014 Feb 28.
9
A variant of guanidine-IV riboswitches exhibits evidence of a distinct ligand specificity.
RNA Biol. 2023 Jan;20(1):10-19. doi: 10.1080/15476286.2022.2160562.
10
New insights into riboswitch regulation mechanisms.
Mol Microbiol. 2011 Jun;80(5):1148-54. doi: 10.1111/j.1365-2958.2011.07654.x. Epub 2011 Apr 20.

引用本文的文献

1
TaRTLEt: Transcriptionally-active Riboswitch Tracer Leveraging Edge deTection.
PeerJ. 2025 May 26;13:e19418. doi: 10.7717/peerj.19418. eCollection 2025.
2
A Riboflavin Transporter in Bdellovibrio exovorous JSS.
J Mol Microbiol Biotechnol. 2019;29(1-6):27-34. doi: 10.1159/000501354. Epub 2019 Sep 11.
3
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Genes (Basel). 2018 Jun 15;9(6):302. doi: 10.3390/genes9060302.
4
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions.
Nucleic Acids Res. 2017 Oct 13;45(18):10811-10823. doi: 10.1093/nar/gkx699.
5
Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities.
ISME J. 2017 Jun;11(6):1434-1446. doi: 10.1038/ismej.2017.2. Epub 2017 Feb 10.

本文引用的文献

2
A synthetic riboswitch that operates using a rationally designed ligand-RNA pair.
Angew Chem Int Ed Engl. 2013 Sep 16;52(38):9976-9. doi: 10.1002/anie.201303370. Epub 2013 Sep 3.
3
Infernal 1.1: 100-fold faster RNA homology searches.
Bioinformatics. 2013 Nov 15;29(22):2933-5. doi: 10.1093/bioinformatics/btt509. Epub 2013 Sep 4.
4
Engineering modular 'ON' RNA switches using biological components.
Nucleic Acids Res. 2013 Dec;41(22):10449-61. doi: 10.1093/nar/gkt787. Epub 2013 Sep 2.
5
A riboswitch-regulated antisense RNA in Listeria monocytogenes.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13132-7. doi: 10.1073/pnas.1304795110. Epub 2013 Jul 22.
6
Rfam 11.0: 10 years of RNA families.
Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32. doi: 10.1093/nar/gks1005. Epub 2012 Nov 3.
8
Elucidating metabolic pathways and digging for genes of unknown function in microbial communities: the riboswitch approach.
Clin Microbiol Infect. 2012 Jul;18 Suppl 4:35-9. doi: 10.1111/j.1469-0691.2012.03864.x.
9
High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch.
Metab Eng. 2012 Jul;14(4):306-16. doi: 10.1016/j.ymben.2012.04.004. Epub 2012 Apr 25.
10
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验