Peselis Alla, Serganov Alexander
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
Biochim Biophys Acta. 2014 Oct;1839(10):908-918. doi: 10.1016/j.bbagrm.2014.02.012. Epub 2014 Feb 28.
The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.
核糖开关领域最近的进展凸显了非编码RNA对基因表达控制的复杂性。核糖开关于十年前被发现,代表了一类多样的非编码mRNA区域,它们具有独特的能力,能够直接感知细胞代谢物,并通过形成无代谢物和结合代谢物的不同构象来调节基因表达。这种无蛋白质的代谢物感应结构域利用RNA分子复杂的三维折叠来区分同源配体与相关化合物,从而只有正确的配体才能触发基因反应。鉴于核糖开关配体的种类繁多,从小阳离子到大辅酶不等,核糖开关具有多种多样的结构。尽管许多核糖开关在构建能够结合代谢物的折叠结构、形成精确的配体结合口袋以及将配体结合事件传递到下游调控区域方面具有共同的结构原则,但几乎所有的核糖开关类别在配体识别方面都具有独特的特征,即使是那些针对相同代谢物进行调控的核糖开关也是如此。在此,我们概述了核糖开关的生化和结构研究,主要关注这些调控RNA元件在进化过程中为特异性靶向小分子并引发基因反应所采用的共同原则和个体特征。本文是名为“核糖开关”的特刊的一部分。