Suppr超能文献

核糖开关结构与功能的主题及变体

Themes and variations in riboswitch structure and function.

作者信息

Peselis Alla, Serganov Alexander

机构信息

Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.

Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.

出版信息

Biochim Biophys Acta. 2014 Oct;1839(10):908-918. doi: 10.1016/j.bbagrm.2014.02.012. Epub 2014 Feb 28.

Abstract

The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.

摘要

核糖开关领域最近的进展凸显了非编码RNA对基因表达控制的复杂性。核糖开关于十年前被发现,代表了一类多样的非编码mRNA区域,它们具有独特的能力,能够直接感知细胞代谢物,并通过形成无代谢物和结合代谢物的不同构象来调节基因表达。这种无蛋白质的代谢物感应结构域利用RNA分子复杂的三维折叠来区分同源配体与相关化合物,从而只有正确的配体才能触发基因反应。鉴于核糖开关配体的种类繁多,从小阳离子到大辅酶不等,核糖开关具有多种多样的结构。尽管许多核糖开关在构建能够结合代谢物的折叠结构、形成精确的配体结合口袋以及将配体结合事件传递到下游调控区域方面具有共同的结构原则,但几乎所有的核糖开关类别在配体识别方面都具有独特的特征,即使是那些针对相同代谢物进行调控的核糖开关也是如此。在此,我们概述了核糖开关的生化和结构研究,主要关注这些调控RNA元件在进化过程中为特异性靶向小分子并引发基因反应所采用的共同原则和个体特征。本文是名为“核糖开关”的特刊的一部分。

相似文献

1
Themes and variations in riboswitch structure and function.
Biochim Biophys Acta. 2014 Oct;1839(10):908-918. doi: 10.1016/j.bbagrm.2014.02.012. Epub 2014 Feb 28.
2
Metabolite recognition principles and molecular mechanisms underlying riboswitch function.
Annu Rev Biophys. 2012;41:343-70. doi: 10.1146/annurev-biophys-101211-113224.
3
The dynamic nature of RNA as key to understanding riboswitch mechanisms.
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
4
Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
Acc Chem Res. 2011 Dec 20;44(12):1329-38. doi: 10.1021/ar200039b. Epub 2011 May 26.
5
Cooperativity, allostery and synergism in ligand binding to riboswitches.
Biochimie. 2015 Oct;117:100-9. doi: 10.1016/j.biochi.2015.06.028. Epub 2015 Jul 2.
6
Preparation and Crystallization of Riboswitches.
Methods Mol Biol. 2016;1320:21-36. doi: 10.1007/978-1-4939-2763-0_3.
7
Determination of riboswitch structures: light at the end of the tunnel?
RNA Biol. 2010 Jan-Feb;7(1):98-103. doi: 10.4161/rna.7.1.10756. Epub 2010 Jan 25.
8
Riboswitch Mechanisms: New Tricks for an Old Dog.
Biochemistry (Mosc). 2021 Aug;86(8):962-975. doi: 10.1134/S0006297921080071.
9
Preparation and crystallization of riboswitch-ligand complexes.
Methods Mol Biol. 2009;540:115-28. doi: 10.1007/978-1-59745-558-9_9.
10
Long-Range Interactions in Riboswitch Control of Gene Expression.
Annu Rev Biophys. 2017 May 22;46:455-481. doi: 10.1146/annurev-biophys-070816-034042. Epub 2017 Mar 30.

引用本文的文献

1
Applying the brakes to transcription: regulation of gene expression by RNA polymerase pausing.
J Bacteriol. 2025 Jul 24;207(7):e0008425. doi: 10.1128/jb.00084-25. Epub 2025 Jun 6.
2
Secondary-Structure-Informed RNA Inverse Design via Relational Graph Neural Networks.
Noncoding RNA. 2025 Feb 26;11(2):18. doi: 10.3390/ncrna11020018.
3
- Simplifying the Complex: Building, Simulating, and Analyzing Protein-Ligand Systems in .
J Chem Inf Model. 2025 Feb 24;65(4):1967-1978. doi: 10.1021/acs.jcim.4c02158. Epub 2025 Feb 11.
4
NusG-dependent RNA polymerase pausing is a common feature of riboswitch regulatory mechanisms.
Nucleic Acids Res. 2024 Nov 27;52(21):12945-12960. doi: 10.1093/nar/gkae981.
5
START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances.
Adv Sci (Weinh). 2024 Sep;11(36):e2402029. doi: 10.1002/advs.202402029. Epub 2024 Jul 29.
6
Ribocentre-switch: a database of riboswitches.
Nucleic Acids Res. 2024 Jan 5;52(D1):D265-D272. doi: 10.1093/nar/gkad891.
7
8-oxoguanine riboswitches in bacteria detect and respond to oxidative DNA damage.
Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2307854120. doi: 10.1073/pnas.2307854120. Epub 2023 Sep 25.
8
Riboswitches as therapeutic targets: promise of a new era of antibiotics.
Expert Opin Ther Targets. 2023 Jan-Jun;27(6):433-445. doi: 10.1080/14728222.2023.2230363. Epub 2023 Jul 6.
9
RNA-ligand molecular docking: advances and challenges.
Wiley Interdiscip Rev Comput Mol Sci. 2022 May-Jun;12(3). doi: 10.1002/wcms.1571. Epub 2021 Aug 16.

本文引用的文献

1
Riboswitches in eubacteria sense the second messenger c-di-AMP.
Nat Chem Biol. 2013 Dec;9(12):834-9. doi: 10.1038/nchembio.1363. Epub 2013 Oct 20.
3
Engineering modular 'ON' RNA switches using biological components.
Nucleic Acids Res. 2013 Dec;41(22):10449-61. doi: 10.1093/nar/gkt787. Epub 2013 Sep 2.
4
Tuning a riboswitch response through structural extension of a pseudoknot.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3256-64. doi: 10.1073/pnas.1304585110. Epub 2013 Aug 12.
5
A riboswitch-regulated antisense RNA in Listeria monocytogenes.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13132-7. doi: 10.1073/pnas.1304795110. Epub 2013 Jul 22.
6
Three-state mechanism couples ligand and temperature sensing in riboswitches.
Nature. 2013 Jul 18;499(7458):355-9. doi: 10.1038/nature12378. Epub 2013 Jul 10.
7
Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
ACS Synth Biol. 2013 Aug 16;2(8):463-72. doi: 10.1021/sb4000096. Epub 2013 Mar 28.
8
Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold.
Nat Chem Biol. 2013 Jun;9(6):353-5. doi: 10.1038/nchembio.1231. Epub 2013 Apr 14.
9
Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4188-93. doi: 10.1073/pnas.1218062110. Epub 2013 Feb 25.
10
Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.
Nucleic Acids Res. 2013 Mar 1;41(5):3022-31. doi: 10.1093/nar/gkt057. Epub 2013 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验