University of Ottawa, Ottawa, Ontario, Canada.
Small. 2014 May 28;10(10):2077-86. doi: 10.1002/smll.201303602. Epub 2014 Mar 2.
We demonstrate the automated and reproducible fabrication of sub-2-nm nanopores in 10-nm thick silicon nitride membranes, through controlled dielectric breakdown in solution. Our results reveal that under the appropriate conditions, nanopores can be fabricated with a size no larger than 2.0 ± 0.5-nm in diameter for a sample of N = 23 nanopores, with an average and standard deviation of 1.3 ± 0.6-nm. The dimensions of these nanopores are confirmed by using individual translocating DNA molecules as molecular rulers. We show that a 2.0-nm and a 2.1-nm diameter nanopore are capable of distinguishing single-stranded DNA versus double-stranded DNA, and that a 2.4-nm diameter nanopore can be used to investigate the overstretching transition in short dsDNA fragments. These results highlight the reliability and precision of the automated fabrication of nanopores via controlled dielectric breakdown, showing great promise for the manufacturing of future nanopore-based technologies.
我们通过在溶液中控制介电击穿,展示了在 10nm 厚的氮化硅膜中自动且可重复地制造亚 2nm 纳米孔的方法。我们的结果表明,在适当的条件下,可以制造出直径不大于 2.0 ± 0.5nm 的纳米孔,对于 23 个纳米孔的样本,其平均直径和标准偏差分别为 1.3 ± 0.6nm。这些纳米孔的尺寸通过使用单个迁移 DNA 分子作为分子标尺得到了证实。我们表明,直径为 2.0nm 和 2.1nm 的纳米孔能够区分单链 DNA 与双链 DNA,而直径为 2.4nm 的纳米孔可用于研究短 dsDNA 片段的过度拉伸转变。这些结果突出了通过控制介电击穿自动制造纳米孔的可靠性和精度,为未来基于纳米孔的技术的制造展示了广阔的前景。