Handorf Elizabeth A, Bekelman Justin E, Heitjan Daniel F, Mitra Nandita
Fox Chase Cancer Center.
University of Pennsylvania.
Ann Appl Stat. 2013;7(4):2062-2080. doi: 10.1214/13-AOAS665.
Estimates of the effects of treatment on cost from observational studies are subject to bias if there are unmeasured confounders. It is therefore advisable in practice to assess the potential magnitude of such biases. We derive a general adjustment formula for loglinear models of mean cost and explore special cases under plausible assumptions about the distribution of the unmeasured confounder. We assess the performance of the adjustment by simulation, in particular, examining robustness to a key assumption of conditional independence between the unmeasured and measured covariates given the treatment indicator. We apply our method to SEER-Medicare cost data for a stage II/III muscle-invasive bladder cancer cohort. We evaluate the costs for radical cystectomy combined radiation/chemotherapy, and find that the significance of the treatment effect is sensitive to plausible unmeasured Bernoulli, Poisson and Gamma confounders.
如果存在未测量的混杂因素,那么来自观察性研究的治疗对成本影响的估计会存在偏差。因此,在实践中评估此类偏差的潜在大小是可取的。我们推导了均值成本对数线性模型的一般调整公式,并在关于未测量混杂因素分布的合理假设下探讨了特殊情况。我们通过模拟评估调整的性能,特别是检验在给定治疗指标的情况下,未测量协变量和测量协变量之间条件独立性这一关键假设的稳健性。我们将我们的方法应用于II/III期肌层浸润性膀胱癌队列的监测、流行病学和最终结果(SEER)-医疗保险成本数据。我们评估了根治性膀胱切除术联合放疗/化疗的成本,并发现治疗效果的显著性对合理的未测量伯努利、泊松和伽马混杂因素很敏感。