Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
Epidemiology. 2011 Jan;22(1):42-52. doi: 10.1097/EDE.0b013e3181f74493.
Uncontrolled confounding in observational studies gives rise to biased effect estimates. Sensitivity analysis techniques can be useful in assessing the magnitude of these biases. In this paper, we use the potential outcomes framework to derive a general class of sensitivity-analysis formulas for outcomes, treatments, and measured and unmeasured confounding variables that may be categorical or continuous. We give results for additive, risk-ratio and odds-ratio scales. We show that these results encompass a number of more specific sensitivity-analysis methods in the statistics and epidemiology literature. The applicability, usefulness, and limits of the bias-adjustment formulas are discussed. We illustrate the sensitivity-analysis techniques that follow from our results by applying them to 3 different studies. The bias formulas are particularly simple and easy to use in settings in which the unmeasured confounding variable is binary with constant effect on the outcome across treatment levels.
观察性研究中的未控制混杂会导致有偏的效应估计。敏感性分析技术可用于评估这些偏差的大小。在本文中,我们使用潜在结果框架推导出了一类适用于结局、处理因素以及可测量和不可测量混杂因素的敏感性分析公式,这些混杂因素可以是分类变量或连续变量。我们给出了加性、风险比和优势比尺度的结果。我们表明,这些结果包含了统计学和流行病学文献中一些更具体的敏感性分析方法。讨论了偏差调整公式的适用性、有用性和局限性。我们通过将这些技术应用于 3 个不同的研究来说明我们的结果所产生的敏感性分析技术。在未测量的混杂变量是二分类且在各处理水平对结局的效应不变的情况下,偏差公式特别简单易用。