Suppr超能文献

一种通过正电子发射断层扫描成像肿瘤中糖原代谢的新型示踪剂。

A novel radiotracer to image glycogen metabolism in tumors by positron emission tomography.

机构信息

Authors' Affiliations: Comprehensive Cancer Imaging Centre; and Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom; and Children's Medical Center Research Institute, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas.

出版信息

Cancer Res. 2014 Mar 1;74(5):1319-28. doi: 10.1158/0008-5472.CAN-13-2768.

Abstract

The high rate of glucose uptake to fuel the bioenergetic and anabolic demands of proliferating cancer cells is well recognized and is exploited with (18)F-2-fluoro-2-deoxy-d-glucose positron emission tomography ((18)F-FDG-PET) to image tumors clinically. In contrast, enhanced glucose storage as glycogen (glycogenesis) in cancer is less well understood and the availability of a noninvasive method to image glycogen in vivo could provide important biologic insights. Here, we demonstrate that (18)F-N-(methyl-(2-fluoroethyl)-1H-[1,2,3]triazole-4-yl)glucosamine ((18)F-NFTG) annotates glycogenesis in cancer cells and tumors in vivo, measured by PET. Specificity of glycogen labeling was demonstrated by isolating (18)F-NFTG-associated glycogen and with stable knockdown of glycogen synthase 1, which inhibited (18)F-NFTG uptake, whereas oncogene (Rab25) activation-associated glycogen synthesis led to increased uptake. We further show that the rate of glycogenesis is cell-cycle regulated, enhanced during the nonproliferative state of cancer cells. We demonstrate that glycogen levels, (18)F-NFTG, but not (18)F-FDG uptake, increase proportionally with cell density and G1-G0 arrest, with potential application in the assessment of activation of oncogenic pathways related to glycogenesis and the detection of posttreatment tumor quiescence.

摘要

高葡萄糖摄取率为增殖癌细胞的生物能量和合成代谢需求提供燃料,这一点已得到广泛认可,并通过(18)F-2-氟-2-脱氧-d-葡萄糖正电子发射断层扫描((18)F-FDG-PET)用于临床肿瘤成像。相比之下,癌症中增强的葡萄糖储存为糖原(糖原生成)则不太为人所知,而能够无创地在体内成像糖原的方法可能会提供重要的生物学见解。在这里,我们证明(18)F-N-(甲基-(2-氟乙基)-1H-[1,2,3]三唑-4-基)葡萄糖胺((18)F-NFTG)可以通过 PET 测量来注释癌细胞和体内肿瘤中的糖原生成。通过分离(18)F-NFTG 相关的糖原和稳定敲低糖原合酶 1,证明了糖原标记的特异性,这抑制了(18)F-NFTG 的摄取,而癌基因(Rab25)激活相关的糖原合成导致摄取增加。我们进一步表明,糖原生成的速度受细胞周期调控,在癌细胞的非增殖状态下增强。我们证明糖原水平、(18)F-NFTG,但不是(18)F-FDG 的摄取,与细胞密度和 G1-G0 阻滞呈比例增加,这可能应用于评估与糖原生成相关的致癌途径的激活以及检测治疗后肿瘤静止状态。

相似文献

1
A novel radiotracer to image glycogen metabolism in tumors by positron emission tomography.
Cancer Res. 2014 Mar 1;74(5):1319-28. doi: 10.1158/0008-5472.CAN-13-2768.
3
4
¹⁸F-FDG PET/CT: a review of diagnostic and prognostic features in multiple myeloma and related disorders.
Clin Exp Med. 2015 Feb;15(1):1-18. doi: 10.1007/s10238-014-0308-3. Epub 2014 Sep 14.
5
Positron emission tomography-adapted therapy for first-line treatment in individuals with Hodgkin lymphoma.
Cochrane Database Syst Rev. 2015 Jan 9;1(1):CD010533. doi: 10.1002/14651858.CD010533.pub2.
8
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
9
PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer.
Cochrane Database Syst Rev. 2014 Nov 13;2014(11):CD009519. doi: 10.1002/14651858.CD009519.pub2.

引用本文的文献

1
Using endogenous glycogen as relaxation agent for imaging liver metabolism by MRI.
Fundam Res. 2022 Oct 29;3(4):481-487. doi: 10.1016/j.fmre.2022.10.010. eCollection 2023 Jul.
2
Harnessing dual-energy CT for glycogen quantification: a phantom analysis.
Quant Imaging Med Surg. 2023 Aug 1;13(8):4933-4942. doi: 10.21037/qims-22-1234. Epub 2023 May 24.
3
Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis.
Int J Mol Sci. 2022 Dec 13;23(24):15831. doi: 10.3390/ijms232415831.
4
A Micro-Scale Analytical Method for Determining Glycogen Turnover by NMR and FTMS.
Metabolites. 2022 Aug 18;12(8):760. doi: 10.3390/metabo12080760.
5
Metabolic targeting of malignant tumors: a need for systemic approach.
J Cancer Res Clin Oncol. 2023 May;149(5):2115-2138. doi: 10.1007/s00432-022-04212-w. Epub 2022 Aug 4.
6
Positron emission tomography molecular imaging-based cancer phenotyping.
Cancer. 2022 Jul 15;128(14):2704-2716. doi: 10.1002/cncr.34228. Epub 2022 Apr 13.
7
The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer.
J Diabetes Metab Disord. 2020 Aug 19;19(2):1731-1775. doi: 10.1007/s40200-020-00566-5. eCollection 2020 Dec.
8
Revisiting Glycogen in Cancer: A Conspicuous and Targetable Enabler of Malignant Transformation.
Front Oncol. 2020 Oct 30;10:592455. doi: 10.3389/fonc.2020.592455. eCollection 2020.
9
Visualizing Subcellular Enrichment of Glycogen in Live Cancer Cells by Stimulated Raman Scattering.
Anal Chem. 2020 Oct 6;92(19):13182-13191. doi: 10.1021/acs.analchem.0c02348. Epub 2020 Sep 21.
10
Development of a fluorine-18 radiolabelled fluorescent chalcone: evaluated for detecting glycogen.
EJNMMI Radiopharm Chem. 2020 Jun 23;5(1):17. doi: 10.1186/s41181-020-00098-6.

本文引用的文献

1
Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells.
Cell Metab. 2012 Dec 5;16(6):751-64. doi: 10.1016/j.cmet.2012.10.017. Epub 2012 Nov 21.
2
Vector systems for prenatal gene therapy: principles of retrovirus vector design and production.
Methods Mol Biol. 2012;891:85-107. doi: 10.1007/978-1-61779-873-3_5.
3
Intra-tumour heterogeneity: a looking glass for cancer?
Nat Rev Cancer. 2012 Apr 19;12(5):323-34. doi: 10.1038/nrc3261.
4
Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress.
EMBO Mol Med. 2012 Feb;4(2):125-41. doi: 10.1002/emmm.201100193. Epub 2012 Jan 18.
5
Evaluation of deuterated 18F- and 11C-labeled choline analogs for cancer detection by positron emission tomography.
Clin Cancer Res. 2012 Feb 15;18(4):1063-72. doi: 10.1158/1078-0432.CCR-11-2462. Epub 2012 Jan 10.
6
Guidelines for the welfare and use of animals in cancer research.
Br J Cancer. 2010 May 25;102(11):1555-77. doi: 10.1038/sj.bjc.6605642.
7
Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth.
Mol Biol Cell. 2010 Jun 15;21(12):1982-90. doi: 10.1091/mbc.e10-01-0056. Epub 2010 Apr 28.
8
Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling.
Cancer Res. 2009 Oct 15;69(20):7986-93. doi: 10.1158/0008-5472.CAN-09-2266. Epub 2009 Oct 13.
9
"Fluorescent glycogen" formation with sensibility for in vivo and in vitro detection.
Glycoconj J. 2008 Aug;25(6):503-10. doi: 10.1007/s10719-007-9075-7. Epub 2007 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验