Chaika Alexander N, Molodtsova Olga V, Zakharov Alexei A, Marchenko Dmitry, Sánchez-Barriga Jaime, Varykhalov Andrei, Babenkov Sergey V, Portail Marc, Zielinski Marcin, Murphy Barry E, Krasnikov Sergey A, Lübben Olaf, Shvets Igor V, Aristov Victor Y
Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow District, 2 Academician Ossipyan str., 142432, Russian Federation. Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin 2, Ireland.
Nanotechnology. 2014 Apr 4;25(13):135605. doi: 10.1088/0957-4484/25/13/135605. Epub 2014 Mar 4.
The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the left angle bracket 110 right angle bracket-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers.
利用扫描隧道显微镜(STM)和低能电子衍射研究了超高真空石墨烯合成过程中立方碳化硅(001)表面的原子结构。原子分辨STM研究证明合成了由纳米畴组成的均匀毫米级石墨烯覆盖层,这些纳米畴相对于<110>方向的边界旋转了±13.5°。畴界的优先方向与石墨烯合成之前制备的SiC(001)-c(2×2)重构上的碳原子链方向一致。所呈现的数据表明了SiC(001)-c(2×2)表面与石墨烯/SiC(001)旋转畴网络的原子结构之间的相关性,并为在低成本立方碳化硅(001)/硅(001)晶圆上优化大面积石墨烯合成铺平了道路。