Suppr超能文献

基于深度学习的睾丸组织病理图像中小管上皮层分割方法。

Deep learning-based method for segmenting epithelial layer of tubules in histopathological images of testicular tissue.

作者信息

Fakhrzadeh Azadeh, Karimian Pouya, Meyari Mahsa, Luengo Hendriks Cris L, Holm Lena, Sonne Christian, Dietz Rune, Spörndly-Nees Ellinor

机构信息

Iranian Research Institute for Information Science and Technology, Information Technology Department, Tehran, Iran.

Amirkabir University of Technology (Tehran Polytechnic), Industrial Engineering and Management Systems Department, Tehran, Iran.

出版信息

J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S17501. doi: 10.1117/1.JMI.10.3.037501. Epub 2023 May 3.

Abstract

PURPOSE

There is growing concern that male reproduction is affected by environmental chemicals. One way to determine the adverse effect of environmental pollutants is to use wild animals as monitors and evaluate testicular toxicity using histopathology. We propose an automated method to process histology images of testicular tissue.

APPROACH

Testicular tissue consists of seminiferous tubules. Segmenting the epithelial layer of the seminiferous tubule is a prerequisite for developing automated methods to detect abnormalities in tissue. We suggest an encoder-decoder fully connected convolutional neural network model to segment the epithelial layer of the seminiferous tubules in histological images. The ResNet-34 is used in the feature encoder module, and the squeeze and excitation attention block is integrated into the encoding module improving the segmentation and localization of epithelium.

RESULTS

We applied the proposed method for the two-class problem, where the epithelial layer of the tubule is the target class. The -score and Intersection over Union of the proposed method are 0.85 and 0.92. Although the proposed method is trained on a limited training set, it performs well on an independent dataset and outperforms other state-of-the-art methods.

CONCLUSION

The pretrained ResNet-34 in the encoder and attention block suggested in the decoder result in better segmentation and generalization. The proposed method can be applied to testicular tissue images from any mammalian species and can be used as the first part of a fully automated testicular tissue processing pipeline. The dataset and codes are publicly available on GitHub.

摘要

目的

人们越来越担心男性生殖受到环境化学物质的影响。确定环境污染物不利影响的一种方法是将野生动物用作监测器,并使用组织病理学评估睾丸毒性。我们提出了一种自动化方法来处理睾丸组织的组织学图像。

方法

睾丸组织由生精小管组成。分割生精小管的上皮层是开发自动检测组织异常方法的先决条件。我们建议使用编码器-解码器全连接卷积神经网络模型来分割组织学图像中生精小管的上皮层。特征编码器模块中使用了ResNet-34,并将挤压与激励注意力模块集成到编码模块中,以改善上皮的分割和定位。

结果

我们将所提出的方法应用于两类问题,其中小管的上皮层为目标类别。所提出方法的Dice分数和交并比分别为0.85和0.92。尽管所提出的方法是在有限的训练集上进行训练的,但它在独立数据集上表现良好,并且优于其他现有方法。

结论

编码器中预训练的ResNet-34和解码器中建议的注意力模块可实现更好的分割和泛化。所提出的方法可应用于任何哺乳动物物种的睾丸组织图像,并可作为全自动睾丸组织处理流程的第一部分。数据集和代码可在GitHub上公开获取。

相似文献

1
Deep learning-based method for segmenting epithelial layer of tubules in histopathological images of testicular tissue.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S17501. doi: 10.1117/1.JMI.10.3.037501. Epub 2023 May 3.
2
Deep learning-based method for segmenting epithelial layer of tubules in histopathological images of testicular tissue.
J Med Imaging (Bellingham). 2023 May;10(3):037501. doi: 10.1117/1.JMI.10.3.037501. Epub 2023 May 3.
4
A dense multi-path decoder for tissue segmentation in histopathology images.
Comput Methods Programs Biomed. 2019 May;173:119-129. doi: 10.1016/j.cmpb.2019.03.007. Epub 2019 Mar 14.
5
Feature-guided attention network for medical image segmentation.
Med Phys. 2023 Aug;50(8):4871-4886. doi: 10.1002/mp.16253. Epub 2023 Feb 16.
6
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
8
A robust image segmentation and synthesis pipeline for histopathology.
Med Image Anal. 2025 Jan;99:103344. doi: 10.1016/j.media.2024.103344. Epub 2024 Sep 11.
10
SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation.
Comput Biol Med. 2023 Sep;163:107132. doi: 10.1016/j.compbiomed.2023.107132. Epub 2023 Jun 10.

本文引用的文献

1
Discriminative error prediction network for semi-supervised colon gland segmentation.
Med Image Anal. 2022 Jul;79:102458. doi: 10.1016/j.media.2022.102458. Epub 2022 Apr 22.
2
A hybrid deep learning approach for gland segmentation in prostate histopathological images.
Artif Intell Med. 2021 May;115:102076. doi: 10.1016/j.artmed.2021.102076. Epub 2021 Apr 16.
3
Automated assessment of glomerulosclerosis and tubular atrophy using deep learning.
Comput Med Imaging Graph. 2021 Jun;90:101930. doi: 10.1016/j.compmedimag.2021.101930. Epub 2021 May 2.
4
Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology.
J Am Soc Nephrol. 2021 Jan;32(1):52-68. doi: 10.1681/ASN.2020050597. Epub 2020 Nov 5.
5
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
6
Combo loss: Handling input and output imbalance in multi-organ segmentation.
Comput Med Imaging Graph. 2019 Jul;75:24-33. doi: 10.1016/j.compmedimag.2019.04.005. Epub 2019 May 9.
7
Recurrent residual U-Net for medical image segmentation.
J Med Imaging (Bellingham). 2019 Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub 2019 Mar 27.
9
Recalibrating Fully Convolutional Networks With Spatial and Channel "Squeeze and Excitation" Blocks.
IEEE Trans Med Imaging. 2019 Feb;38(2):540-549. doi: 10.1109/TMI.2018.2867261.
10
A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology.
IEEE Trans Med Imaging. 2017 Jul;36(7):1550-1560. doi: 10.1109/TMI.2017.2677499. Epub 2017 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验