Fakhrzadeh Azadeh, Karimian Pouya, Meyari Mahsa, Luengo Hendriks Cris L, Holm Lena, Sonne Christian, Dietz Rune, Spörndly-Nees Ellinor
Iranian Research Institute for Information Science and Technology, Information Technology Department, Tehran, Iran.
Amirkabir University of Technology (Tehran Polytechnic), Industrial Engineering and Management Systems Department, Tehran, Iran.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S17501. doi: 10.1117/1.JMI.10.3.037501. Epub 2023 May 3.
There is growing concern that male reproduction is affected by environmental chemicals. One way to determine the adverse effect of environmental pollutants is to use wild animals as monitors and evaluate testicular toxicity using histopathology. We propose an automated method to process histology images of testicular tissue.
Testicular tissue consists of seminiferous tubules. Segmenting the epithelial layer of the seminiferous tubule is a prerequisite for developing automated methods to detect abnormalities in tissue. We suggest an encoder-decoder fully connected convolutional neural network model to segment the epithelial layer of the seminiferous tubules in histological images. The ResNet-34 is used in the feature encoder module, and the squeeze and excitation attention block is integrated into the encoding module improving the segmentation and localization of epithelium.
We applied the proposed method for the two-class problem, where the epithelial layer of the tubule is the target class. The -score and Intersection over Union of the proposed method are 0.85 and 0.92. Although the proposed method is trained on a limited training set, it performs well on an independent dataset and outperforms other state-of-the-art methods.
The pretrained ResNet-34 in the encoder and attention block suggested in the decoder result in better segmentation and generalization. The proposed method can be applied to testicular tissue images from any mammalian species and can be used as the first part of a fully automated testicular tissue processing pipeline. The dataset and codes are publicly available on GitHub.
人们越来越担心男性生殖受到环境化学物质的影响。确定环境污染物不利影响的一种方法是将野生动物用作监测器,并使用组织病理学评估睾丸毒性。我们提出了一种自动化方法来处理睾丸组织的组织学图像。
睾丸组织由生精小管组成。分割生精小管的上皮层是开发自动检测组织异常方法的先决条件。我们建议使用编码器-解码器全连接卷积神经网络模型来分割组织学图像中生精小管的上皮层。特征编码器模块中使用了ResNet-34,并将挤压与激励注意力模块集成到编码模块中,以改善上皮的分割和定位。
我们将所提出的方法应用于两类问题,其中小管的上皮层为目标类别。所提出方法的Dice分数和交并比分别为0.85和0.92。尽管所提出的方法是在有限的训练集上进行训练的,但它在独立数据集上表现良好,并且优于其他现有方法。
编码器中预训练的ResNet-34和解码器中建议的注意力模块可实现更好的分割和泛化。所提出的方法可应用于任何哺乳动物物种的睾丸组织图像,并可作为全自动睾丸组织处理流程的第一部分。数据集和代码可在GitHub上公开获取。