Suppr超能文献

MDU-Net:用于生物医学图像分割的多尺度密集连接U型网络。

MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation.

作者信息

Zhang Jiawei, Zhang Yanchun, Jin Yuzhen, Xu Jilan, Xu Xiaowei

机构信息

The Department of New Networks, Peng Cheng Laboratory, Shenzhen, Guangdong China.

Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences),Southern Medical University, Guangzhou, Guangdong China.

出版信息

Health Inf Sci Syst. 2023 Mar 13;11(1):13. doi: 10.1007/s13755-022-00204-9. eCollection 2023 Dec.

Abstract

Biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions to biomedical image segmentation applications. In this paper, we propose three different multi-scale dense connections (MDC) for the encoder, the decoder of U-shaped architectures, and across them. Based on three dense connections, we propose a multi-scale densely connected U-Net (MDU-Net) for biomedical image segmentation. MDU-Net directly fuses the neighboring feature maps with different scales from both higher layers and lower layers to strengthen feature propagation in the current layer. Multi-scale dense connections, which contain shorter connections between layers close to the input and output, also make a much deeper U-Net possible. Besides, we introduce quantization to alleviate the potential overfitting in dense connections, and further improve the segmentation performance. We evaluate our proposed model on the MICCAI 2015 Gland Segmentation (GlaS) dataset. The three MDC improve U-Net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile, the MDU-Net with quantization obviously improves the segmentation performance of original U-Net.

摘要

生物医学图像分割在定量分析、临床诊断和医学干预中起着核心作用。鉴于全卷积网络(FCN)和U-Net,深度卷积网络(DNN)对生物医学图像分割应用做出了重大贡献。在本文中,我们为U型架构的编码器、解码器以及它们之间提出了三种不同的多尺度密集连接(MDC)。基于这三种密集连接,我们提出了一种用于生物医学图像分割的多尺度密集连接U-Net(MDU-Net)。MDU-Net直接融合来自高层和低层具有不同尺度的相邻特征图,以加强当前层中的特征传播。多尺度密集连接在靠近输入和输出的层之间包含更短的连接,这也使得更深的U-Net成为可能。此外,我们引入量化来缓解密集连接中潜在的过拟合,并进一步提高分割性能。我们在MICCAI 2015腺体分割(GlaS)数据集上评估我们提出的模型。在MICCAI腺体数据集中,这三种MDC在测试A中将U-Net性能提高了1.8%,在测试B中提高了3.5%。同时,具有量化的MDU-Net明显提高了原始U-Net的分割性能。

相似文献

6
DENSE-INception U-net for medical image segmentation.基于密集卷积 Inception 的 U-Net 网络在医学图像分割中的应用
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.

引用本文的文献

3
[Pancreas segmentation with multi-channel convolution and combined deep supervision].[基于多通道卷积和联合深度监督的胰腺分割]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Feb 25;42(1):140-147. doi: 10.7507/1001-5515.202409019.

本文引用的文献

1
U-Net-Based Medical Image Segmentation.基于 U-Net 的医学图像分割。
J Healthc Eng. 2022 Apr 15;2022:4189781. doi: 10.1155/2022/4189781. eCollection 2022.
7
Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.二维稀疏光声断层成像伪影去除的全密集 UNet。
IEEE J Biomed Health Inform. 2020 Feb;24(2):568-576. doi: 10.1109/JBHI.2019.2912935. Epub 2019 Apr 23.
9
Deep Convolutional Neural Network for Inverse Problems in Imaging.基于深度卷积神经网络的医学影像反问题研究
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
10
Exploring Context with Deep Structured Models for Semantic Segmentation.深度学习模型在语义分割中的语境探索。
IEEE Trans Pattern Anal Mach Intell. 2018 Jun;40(6):1352-1366. doi: 10.1109/TPAMI.2017.2708714. Epub 2017 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验