Zhang Jiawei, Zhang Yanchun, Jin Yuzhen, Xu Jilan, Xu Xiaowei
The Department of New Networks, Peng Cheng Laboratory, Shenzhen, Guangdong China.
Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences),Southern Medical University, Guangzhou, Guangdong China.
Health Inf Sci Syst. 2023 Mar 13;11(1):13. doi: 10.1007/s13755-022-00204-9. eCollection 2023 Dec.
Biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions to biomedical image segmentation applications. In this paper, we propose three different multi-scale dense connections (MDC) for the encoder, the decoder of U-shaped architectures, and across them. Based on three dense connections, we propose a multi-scale densely connected U-Net (MDU-Net) for biomedical image segmentation. MDU-Net directly fuses the neighboring feature maps with different scales from both higher layers and lower layers to strengthen feature propagation in the current layer. Multi-scale dense connections, which contain shorter connections between layers close to the input and output, also make a much deeper U-Net possible. Besides, we introduce quantization to alleviate the potential overfitting in dense connections, and further improve the segmentation performance. We evaluate our proposed model on the MICCAI 2015 Gland Segmentation (GlaS) dataset. The three MDC improve U-Net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile, the MDU-Net with quantization obviously improves the segmentation performance of original U-Net.
生物医学图像分割在定量分析、临床诊断和医学干预中起着核心作用。鉴于全卷积网络(FCN)和U-Net,深度卷积网络(DNN)对生物医学图像分割应用做出了重大贡献。在本文中,我们为U型架构的编码器、解码器以及它们之间提出了三种不同的多尺度密集连接(MDC)。基于这三种密集连接,我们提出了一种用于生物医学图像分割的多尺度密集连接U-Net(MDU-Net)。MDU-Net直接融合来自高层和低层具有不同尺度的相邻特征图,以加强当前层中的特征传播。多尺度密集连接在靠近输入和输出的层之间包含更短的连接,这也使得更深的U-Net成为可能。此外,我们引入量化来缓解密集连接中潜在的过拟合,并进一步提高分割性能。我们在MICCAI 2015腺体分割(GlaS)数据集上评估我们提出的模型。在MICCAI腺体数据集中,这三种MDC在测试A中将U-Net性能提高了1.8%,在测试B中提高了3.5%。同时,具有量化的MDU-Net明显提高了原始U-Net的分割性能。