Suppr超能文献

[三元非电解质溶液的 Kedem-Katchalsky 方程的网络形式。4. 聚合物膜的 Wij Peusner 系数的评估]

[Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 4. Evaluation of Wij Peusner's coefficients for polymeric membrane].

作者信息

Batko Kornelia M, Slęzak-Prochazka Izabella, Slęzak Andrzej

机构信息

Katedra Informatyki Ekonomicznej, Uniwersytet Ekonomiczny, Katowice, Polska.

Instytut Marketingu, Politechnika Częstochowska, Częstochowa, Polska.

出版信息

Polim Med. 2013 Oct-Dec;43(4):241-56.

Abstract

BACKGROUND

Peusner Network Thermodynamics (PNT) enables symmetrical and/or hybrid transformation of classical Kedem-Katchalsky (K-K) equations to network forms. For homogenous nonelectrolyte solutions, two symmetrical and six hybrid forms of network K-K equations can be obtained that contain symmetrical (Rij or Lij) or hybrid (Hij, Wij, Nij, Kij, Sij or Pij) Peusner's coefficients.

OBJECTIVES

The aim of this paper is to present network form of K-K equations for homogenous ternary nonelectrolyte solutions that contains Peusner's coefficients Wij (i, j ∈ {1, 2, 3}). We also aim to calculate dependences of Wij coefficients on average concentration of one component of solution in a membrane (C1) when value of the second one (C1) is fixed and to compare these dependences with appropriate dependences for coefficients Hij, Lij and Rij presented in 1-3 parts of the paper.

MATERIAL AND METHODS

We used a cellulose hemodialysis membrane (Nephrophan) of known transport parameters for aqueous glucose and ethanol solutions as a research material. The PNT formalism and classical form of K-K equations for ternary non-electrolyte solutions was a research tool in this paper.

RESULTS

The network form of K-K equations was presented for ternary solutions that contain solvent and two dissolved substances. For homogenous solutions, we calculated dependences of Peusner's coefficients Wij and quotients Wij/Hij, Wij/Lij and Wij/Rij (i, j ∈ {1, 2, 3}) on average concentration of one component (C1) of the solution in a membrane when value of the second one is fixed (C2). Calculations were made using experimentally determined coefficients of reflection (σ), hydraulic permeability (Lp) and solute permeability (ω).

CONCLUSIONS

The network form of K-K equations that contain Peusner's coefficients Wij (i, j ∈ {1, 2, 3}) is a novel tool to study membrane transport. We showed that majority of the coefficients Wij and quotients Wij/Hij, Wij/Lij and Wij/Rij (i, j ∈ {1, 2, 3}) is sensitive for composition and concentration of solutions separated by a polymer membrane.

摘要

背景

佩斯纳网络热力学(PNT)能够将经典的 Kedem-Katchalsky(K-K)方程对称和/或混合转化为网络形式。对于均匀非电解质溶液,可以得到两种对称形式和六种混合形式的网络 K-K 方程,这些方程包含对称的(Rij 或 Lij)或混合的(Hij、Wij、Nij、Kij、Sij 或 Pij)佩斯纳系数。

目的

本文旨在给出包含佩斯纳系数 Wij(i, j ∈ {1, 2, 3})的均匀三元非电解质溶液的 K-K 方程的网络形式。我们还旨在计算当溶液中另一种组分(C2)的值固定时,Wij 系数对膜中溶液一种组分平均浓度(C1)的依赖性,并将这些依赖性与本文第 1 - 3 部分给出的 Hij、Lij 和 Rij 系数的相应依赖性进行比较。

材料与方法

我们使用了一种已知葡萄糖和乙醇水溶液传输参数的纤维素血液透析膜(Nephrophan)作为研究材料。PNT 形式体系和三元非电解质溶液 K-K 方程的经典形式是本文的研究工具。

结果

给出了包含溶剂和两种溶解物质的三元溶液的 K-K 方程的网络形式。对于均匀溶液,我们计算了佩斯纳系数 Wij 以及商 Wij/Hij、Wij/Lij 和 Wij/Rij(i, j ∈ {1, 2, 3})对膜中溶液一种组分(C1)平均浓度的依赖性,此时另一种组分(C2)的值固定。计算使用了实验测定的反射系数(σ)、水力渗透率(Lp)和溶质渗透率(ω)。

结论

包含佩斯纳系数 Wij(i, j ∈ {1, 2, 3})的 K-K 方程的网络形式是研究膜传输的一种新工具。我们表明,大多数 Wij 系数以及商 Wij/Hij、Wij/Lij 和 Wij/Rij(i, j ∈ {1, 2, 3})对由聚合物膜分隔的溶液的组成和浓度敏感。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验