Batko Kornelia M, Ślęzak-Prochazka Izabella, Ślęzak Andrzej
Katedra Informatyki Ekonomicznej, Uniwersytet Ekonomiczny w Katowicach, Katowice, Polska.
Instytut Marketingu, Politechnika Częstochowska, Częstochowa, Polska.
Polim Med. 2014 Jan-Mar;44(1):39-49.
Peusner's network thermodynamics (PNT) allows symmetrical and/or hybrid transformation of Kedem-Katchalsky (K-K) equations to network form. For homogenous solutions that consist of solvent and two soluble nonelec-metrolyte substances, there are two symmetrical and six hybrid forms of network K-K equations that contain symmetrical (Rij or Lij) or hybrid (Hij, Wij, Sij, Nij, Kij or Pij) Peusner coefficients.
The aim of this study is to introduce the hybrid form of network K-K equations that include tensor Peusner coefficients Sij (i, j ∈ {1, 2, 3}) for homogenous ternary solutions of nonelectrolytes and to calculate dependences of coefficients Sij on mean concentration of one solution component (C1) when the concentration of the other one is constant (C2).
The authors used celulose Nephrophan membrane of known transport parameters for aqueous glucose and ethanol solutions as a study material. The authors applied PNT formalism and K-K equations for ternary nonelectrotyle solutions as a study method.
Hybrid network form of K-K equations was obtained for solutions that consist of a solvent and two dissolved non-electrolyte substances. Dependences of coefficients Sij (i, j ∈ {1, 2, 3}) on mean concentration of one solution component (C1) when the concentration of the other one is constant C2, were calculated for conditions of homogeneity of solutions. These calculations were done using experimentally determined coefficients of reflection (σ), hydraulic (Lp) and solute permeability (ω).
Network form of K-K equations that include Peusner coefficients Sij (i, j ∈ {1, 2, 3}) constitutes a novel research tool to study membrane transport. We showed that coefficients S11, S12, S13, S21, S22, S23, S31, S32 and S33 were sensitive to alterations in concentration and composition of solutions separated by a polymer membrane.
佩乌斯纳网络热力学(PNT)允许将 Kedem - Katchalsky(K - K)方程对称和/或混合转化为网络形式。对于由溶剂和两种可溶性非电解质物质组成的均相溶液,存在两种对称形式和六种混合形式的网络 K - K 方程,它们包含对称(Rij 或 Lij)或混合(Hij、Wij、Sij、Nij、Kij 或 Pij)的佩乌斯纳系数。
本研究的目的是引入包含张量佩乌斯纳系数 Sij(i,j ∈ {1, 2, 3})的非电解质均相三元溶液网络 K - K 方程的混合形式,并在另一种溶液组分浓度恒定(C2)时,计算系数 Sij 对一种溶液组分平均浓度(C1)的依赖性。
作者使用了已知水相葡萄糖和乙醇溶液传输参数的纤维素 Nephrophan 膜作为研究材料。作者应用 PNT 形式主义和三元非电解质溶液的 K - K 方程作为研究方法。
对于由溶剂和两种溶解的非电解质物质组成的溶液,获得了 K - K 方程的混合网络形式。在溶液均匀性条件下,计算了在另一种溶液组分浓度为常数 C2 时,系数 Sij(i,j ∈ {1, 2, 3})对一种溶液组分平均浓度(C1)的依赖性。这些计算使用了实验测定的反射系数(σ)、水力传导率(Lp)和溶质渗透率(ω)。
包含佩乌斯纳系数 Sij(i,j ∈ {1, 2, 3})的 K - K 方程网络形式构成了研究膜传输的一种新型研究工具。我们表明,系数 S11、S12、S13、S21、S22、S23、S31、S32 和 S33 对由聚合物膜分隔的溶液浓度和组成的变化敏感。