Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
J Virol. 2014 May;88(10):5617-29. doi: 10.1128/JVI.02659-13. Epub 2014 Mar 5.
Purified retroviral Gag proteins can assemble in vitro to form immature virus-like particles (VLPs). By cryoelectron tomography, Rous sarcoma virus VLPs show an organized hexameric lattice consisting chiefly of the capsid (CA) domain, with periodic stalk-like densities below the lattice. We hypothesize that the structure represented by these densities is formed by amino acid residues immediately downstream of the folded CA, namely, the short spacer peptide SP, along with a dozen flanking residues. These 24 residues comprise the SP assembly (SPA) domain, and we propose that neighboring SPA units in a Gag hexamer coalesce to form a six-helix bundle. Using in vitro assembly, alanine scanning mutagenesis, and biophysical analyses, we have further characterized the structure and function of SPA. Most of the amino acid residues in SPA could not be mutated individually without abrogating assembly, with the exception of a few residues near the N and C termini, as well as three hydrophilic residues within SPA. We interpret these results to mean that the amino acids that do not tolerate mutations contribute to higher-order structures in VLPs. Hydrogen-deuterium exchange analyses of unassembled Gag compared that of assembled VLPs showed strong protection at the SPA region, consistent with a higher-order structure. Circular dichroism revealed that a 29mer SPA peptide shifts from a random coil to a helix in a concentration-dependent manner. Analytical ultracentrifugation showed concentration-dependent self-association of the peptide into a hexamer. Taken together, these results provide strong evidence for the formation of a critical six-helix bundle in Gag assembly.
The structure of a retrovirus like HIV is created by several thousand molecules of the viral Gag protein, which assemble to form the known hexagonal protein lattice in the virus particle. How the Gag proteins pack together in the lattice is incompletely understood. A short segment of Gag known to be critical for proper assembly has been hypothesized to form a six-helix bundle, which may be the nucleating event that leads to lattice formation. The experiments reported here, using the avian Rous sarcoma virus as a model system, further define the nature of this segment of Gag, show that it is in a higher-order structure in the virus particle, and provide the first direct evidence that it forms a six-helix bundle in retrovirus assembly. Such knowledge may provide underpinnings for the development of antiretroviral drugs that interfere with virus assembly.
纯化的逆转录病毒 Gag 蛋白可在体外组装形成不成熟的病毒样颗粒(VLPs)。通过冷冻电子断层摄影术, Rous 肉瘤病毒 VLPs 显示出由主要由衣壳(CA)结构域组成的有序六聚体晶格,晶格下方有周期性的类似茎的密度。我们假设这些密度所代表的结构是由折叠 CA 下游的氨基酸残基形成的,即短间隔肽 SP 以及十几个侧翼残基。这 24 个残基组成 SP 组装(SPA)结构域,我们提出 Gag 六聚体中的相邻 SPA 单元融合形成六螺旋束。通过体外组装、丙氨酸扫描诱变和生物物理分析,我们进一步表征了 SPA 的结构和功能。除了 N 端和 C 端附近的少数残基以及 SPA 内的三个亲水残基外,SPA 中的大多数氨基酸残基都不能单独突变而不破坏组装。我们解释这些结果的意思是,不能耐受突变的氨基酸残基有助于 VLPs 中的高级结构。与组装的 VLP 相比,未组装的 Gag 的氘氢交换分析显示 SPA 区域有强烈的保护作用,这与高级结构一致。圆二色性分析表明,29 个残基的 SPA 肽以浓度依赖的方式从无规卷曲转变为螺旋。分析超速离心显示该肽在浓度依赖性下自组装成六聚体。综上所述,这些结果为 Gag 组装中形成关键的六螺旋束提供了有力证据。
HIV 样逆转录病毒的结构是由数千个病毒 Gag 蛋白分子组成的,这些蛋白分子组装形成病毒颗粒中的已知六边形蛋白晶格。Gag 蛋白在晶格中的包装方式尚不完全清楚。一个已知对正确组装至关重要的短 Gag 片段被假设形成六螺旋束,这可能是导致晶格形成的核化事件。这里报道的实验使用禽 Rous 肉瘤病毒作为模型系统,进一步定义了 Gag 的这一片段的性质,表明它在病毒颗粒中处于高级结构,并首次直接证明它在逆转录病毒组装中形成六螺旋束。这种知识可能为开发干扰病毒组装的抗逆转录病毒药物提供基础。