Edwards Tara D, Bevan Michael A
Chemical & Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States.
Langmuir. 2014 Sep 16;30(36):10793-803. doi: 10.1021/la500178b. Epub 2014 Mar 19.
In this instructional review, we discuss how to control individual colloids and ensembles of colloids using electric fields. We provide background on the electrokinetic transport mechanisms and kT-scale equilibrium colloidal interactions that enable such control. We also describe the experimental configurations, microscopy methods, image analyses, and material systems for which these mechanisms have been successfully employed. Methods are presented for creating various structures including colloidal chains, quasi-2D colloidal crystals, and 3D colloidal crystals. We also describe electric-field-mediated feedback control of the colloidal crystal size as well as colloidal crystal assembly and disassembly. Finally, we discuss future extensions of these methods that aim to incorporate accurate colloidal crystallization dynamic models into electric-field-mediated feedback control to allow rapid assembly, disassembly, and repair of defect-free colloidal structures.
在本指导性综述中,我们讨论了如何利用电场控制单个胶体以及胶体集合体。我们提供了电动传输机制和kT尺度平衡胶体相互作用的背景知识,这些机制使得这种控制成为可能。我们还描述了这些机制已成功应用的实验配置、显微镜方法、图像分析和材料系统。介绍了创建各种结构的方法,包括胶体链、准二维胶体晶体和三维胶体晶体。我们还描述了电场介导的对胶体晶体尺寸以及胶体晶体组装和解组装的反馈控制。最后,我们讨论了这些方法未来的扩展方向,旨在将精确的胶体结晶动力学模型纳入电场介导的反馈控制中,以实现无缺陷胶体结构的快速组装、拆卸和修复。