Suppr超能文献

在三维纳米光子结构上的赤铁矿超薄膜实现高效光电化学水分解。

Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.

机构信息

Department of Electronic and Computer Engineering and ‡Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China.

出版信息

Nano Lett. 2014;14(4):2123-9. doi: 10.1021/nl500359e. Epub 2014 Mar 11.

Abstract

Photoelectrochemical (PEC) solar water splitting represents a clean and sustainable approach for hydrogen (H2) production and substantial research are being performed to improve the conversion efficiency. Hematite (α-Fe2O3) is considered as a promising candidate for PEC water splitting due to its chemical stability, appropriate band structure, and abundance. However, PEC performance based on hematite is hindered by the short hole diffusion length that put a constraint on the active layer thickness and its light absorption capability. In this work, we have designed and fabricated novel PEC device structure with ultrathin hematite film deposited on three-dimensional nanophotonic structure. In this fashion, the nanophotonic structures can largely improve the light absorption in the ultrathin active materials. In addition, they also provide large surface area to accommodate the slow surface water oxidation process. As the result, high current density of 3.05 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode (RHE) has been achieved on such nanophotonic structure, which is about three times of that for a planar photoelectrode. More importantly, our systematic analysis with experiments and modeling revealed that the design of high performance PEC devices needs to consider not only total optical absorption, but also the absorption profile in the active material, in addition to electrode surface area and carrier collection.

摘要

光电化学(PEC)太阳能分解水代表了一种清洁和可持续的制氢方法,大量的研究正在进行,以提高转换效率。赤铁矿(α-Fe2O3)由于其化学稳定性、适当的能带结构和丰富的储量,被认为是 PEC 水分解的一种很有前途的候选材料。然而,基于赤铁矿的 PEC 性能受到短空穴扩散长度的限制,这限制了活性层的厚度及其光吸收能力。在这项工作中,我们设计并制造了一种具有三维纳米光子结构的超薄赤铁矿薄膜的新型 PEC 器件结构。这样,纳米光子结构可以大大提高超薄活性材料的光吸收。此外,它们还提供了更大的表面积来容纳缓慢的表面水氧化过程。结果,在这种纳米光子结构上实现了相对于可逆氢电极(RHE)的 1.23 V 时 3.05 mA cm(-2)的高电流密度,是平面光电电极的三倍。更重要的是,我们通过实验和建模的系统分析表明,高性能 PEC 器件的设计不仅需要考虑总光吸收,还需要考虑活性材料中的吸收分布,以及电极表面积和载流子收集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验