Suppr超能文献

用于制氢的双异质结纳米线光催化剂。

Double heterojunction nanowire photocatalysts for hydrogen generation.

作者信息

Tongying P, Vietmeyer F, Aleksiuk D, Ferraudi G J, Krylova G, Kuno M

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA.

出版信息

Nanoscale. 2014 Apr 21;6(8):4117-24. doi: 10.1039/c4nr00298a.

Abstract

Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.

摘要

电荷分离以及跨界面的电荷转移是设计用于太阳能转换的高效光催化剂的关键方面。在本研究中,我们研究了基于CdSe纳米线(NWs)的纳米结构光催化剂的产氢能力及其潜在的光物理性质。所研究的体系包括CdSe、CdSe/CdS核壳纳米线及其装饰有Pt纳米颗粒的对应物。飞秒瞬态差分吸收测量揭示了半导体/半导体和金属/半导体异质结如何影响这些混合光催化剂的电荷分离和产氢效率。反过来,我们阐明了表面钝化、半导体界面处的电荷分离以及向金属助催化剂的电荷转移在决定光催化产氢效率方面的作用。这使我们能够解释为什么装饰有Pt纳米颗粒的CdSe/CdS NWs(一种双异质结体系)在紫外/可见光照射下产氢速率约为434.29±27.40 μmol h(-1) g(-1)时表现最佳。特别是,我们得出结论,这种双异质结体系的CdS壳层有两个作用。第一个作用是钝化CdSe NW表面缺陷,导致CdSe/CdS界面处产生长寿命电荷,能够进行还原化学反应。在光激发时,我们还发现CdS选择性地将电荷注入Pt NPs,从而在Pt NP/溶剂界面同时进行还原化学反应。因此,装饰有Pt纳米颗粒的CdSe/CdS NWs能够在两个而非一个界面进行还原化学反应,利用了每个结的最佳催化活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验