State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, China.
Biochemistry. 2014 Apr 1;53(12):1925-34. doi: 10.1021/bi5001867. Epub 2014 Mar 18.
Single-stranded DNA (ssDNA)-binding protein (SSB) protects ssDNA from degradation and recruits other proteins for DNA replication and repair. Escherichia coli SSB is the prototypical eubacterial SSB in a family of tetrameric SSBs. It consists of a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain). The eight-residue C-terminal segment of SSB (C-peptide) mediates the binding of SSB to many different SSB-binding proteins. Previously published nuclear magnetic resonance (NMR) data of the monomeric state at pH 3.4 showed that the C-peptide binds to the OB-domain at a site that overlaps with the ssDNA binding site, but investigating the protein at neutral pH is difficult because of the high molecular mass and limited solubility of the tetramer. Here we show that the C-domain is highly mobile in the SSB tetramer at neutral pH and that binding of the C-peptide to the OB-domain is so weak that most of the C-peptides are unbound even in the absence of ssDNA. We address the problem of determining intramolecular binding affinities in the situation of fast exchange between two states, one of which cannot be observed by NMR and cannot be fully populated. The results were confirmed by electron paramagnetic resonance spectroscopy and microscale thermophoresis. The C-peptide-OB-domain interaction is shown to be driven primarily by electrostatic interactions, so that binding of 1 equiv of (dT)35 releases practically all C-peptides from the OB-domain tetramer. The interaction is much more sensitive to NaCl than to potassium glutamate, which is the usual osmolyte in E. coli. As the C-peptide is predominantly in the unbound state irrespective of the presence of ssDNA, long-range electrostatic effects from the C-peptide may contribute more to regulating the activity of SSB than any engagement of the C-peptide by the OB-domain.
单链 DNA(ssDNA)结合蛋白(SSB)可保护 ssDNA 免受降解,并招募其他蛋白质进行 DNA 复制和修复。大肠杆菌 SSB 是四聚体 SSB 家族中典型的原核 SSB。它由结构上定义明确的 ssDNA 结合结构域(OB 结构域)和无规卷曲的 C 端结构域(C 结构域)组成。SSB 的 8 个残基 C 端片段(C 肽)介导 SSB 与许多不同的 SSB 结合蛋白结合。先前发表的 pH3.4 下单体状态的核磁共振(NMR)数据表明,C 肽结合到 OB 结构域的一个与 ssDNA 结合位点重叠的位点,但由于四聚体的高分子质量和有限的溶解度,在中性 pH 下研究该蛋白是困难的。在这里,我们表明 C 结构域在中性 pH 下的 SSB 四聚体中具有高度的流动性,并且 C 肽与 OB 结构域的结合非常弱,以至于即使没有 ssDNA,大多数 C 肽也未结合。我们解决了在两种状态之间快速交换的情况下确定分子内结合亲和力的问题,其中一种状态无法通过 NMR 观察到,并且不能完全占据。该结果通过电子顺磁共振光谱和微尺度热泳法得到了证实。C 肽-OB 结构域相互作用主要由静电相互作用驱动,因此结合 1 当量的(dT)35 几乎将所有 C 肽从 OB 结构域四聚体中释放出来。该相互作用对 NaCl 比对谷氨酸钾更敏感,谷氨酸钾是大肠杆菌中常用的渗透压调节剂。由于 C 肽无论 ssDNA 的存在与否主要处于未结合状态,因此 C 肽的长程静电效应可能比 OB 结构域与 C 肽的任何结合更有助于调节 SSB 的活性。