Koca Bulent, Kuru Bekir, Ozen Necati, Yoruker Savas, Bek Yuksel
General Surgery, Korgan Devlet Hastanesi, Ordu, Turkey E-mail :
Asian Pac J Cancer Prev. 2014;15(3):1481-8. doi: 10.7314/apjcp.2014.15.3.1481.
To avoid performing axillary lymph node dissection (ALND) for non-sentinel lymph node (SLN)-negative patients with-SLN positive axilla, nomograms for predicting the status have been developed in many centers. We created a new nomogram predicting non-SLN metastasis in SLN-positive patients with invasive breast cancer and evaluated 14 existing breast cancer models in our patient group.
Two hundred and thirty seven invasive breast cancer patients with SLN metastases who underwent ALND were included in the study. Based on independent predictive factors for non-SLN metastasis identified by logistic regression analysis, we developed a new nomogram. Receiver operating characteristics (ROC) curves for the models were created and the areas under the curves (AUC) were computed.
In a multivariate analysis, tumor size, presence of lymphovascular invasion, extranodal extension of SLN, large size of metastatic SLN, the number of negative SLNs, and multifocality were found to be independent predictive factors for non-SLN metastasis. The AUC was found to be 0.87, and calibration was good for the present Ondokuz Mayis nomogram. Among the 14 validated models, the MSKCC, Stanford, Turkish, MD Anderson, MOU (Masaryk), Ljubljana, and DEU models yielded excellent AUC values of > 0.80.
We present a new model to predict the likelihood of non-SLN metastasis. Each clinic should determine and use the most suitable nomogram or should create their own nomograms for the prediction of non- SLN metastasis.
为避免对腋窝前哨淋巴结(SLN)阳性但非前哨淋巴结(non-SLN)阴性的患者进行腋窝淋巴结清扫术(ALND),许多中心已开发出预测该状态的列线图。我们创建了一个新的列线图来预测浸润性乳腺癌SLN阳性患者的non-SLN转移情况,并在我们的患者群体中评估了14种现有的乳腺癌模型。
本研究纳入了237例接受ALND且SLN转移的浸润性乳腺癌患者。基于逻辑回归分析确定的non-SLN转移独立预测因素,我们开发了一个新的列线图。创建了模型的受试者操作特征(ROC)曲线并计算曲线下面积(AUC)。
在多变量分析中,发现肿瘤大小、淋巴管浸润情况、SLN的结外扩展、转移SLN的大小、阴性SLN的数量以及多灶性是non-SLN转移的独立预测因素。发现AUC为0.87,并且本翁多库兹马伊大学列线图的校准效果良好。在14个经过验证的模型中,纪念斯隆凯特琳癌症中心(MSKCC)、斯坦福、土耳其、MD安德森、马萨里克大学(MOU)、卢布尔雅那和德国的模型产生了大于0.80的优秀AUC值。
我们提出了一种新的模型来预测non-SLN转移的可能性。每个临床机构应确定并使用最合适的列线图,或者应创建自己的列线图来预测non-SLN转移。