Suppr超能文献

预测三阴性乳腺癌淋巴结受累情况的列线图

Nomogram for Predicting Lymph Node Involvement in Triple-Negative Breast Cancer.

作者信息

Cui Xiang, Zhu Hao, Huang Jisheng

机构信息

Department of Thyroid and Breast Surgery, The First People's Hospital of Shangqiu, Shangqiu, China.

出版信息

Front Oncol. 2020 Dec 4;10:608334. doi: 10.3389/fonc.2020.608334. eCollection 2020.

Abstract

BACKGROUND

Lymph node metastasis of triple-negative breast cancer (TNBC) is essential in treatment strategy formulation. This study aimed to build a nomogram that predicts lymph node metastasis in patients with TNBC.

MATERIALS AND METHODS

A total of 28,966 TNBC patients diagnosed from 2010 to 2017 in the Surveillance, Epidemiology and End Results (SEER) database were enrolled, and randomized 1:1 into the training and validation sets, respectively. Univariate and multivariate logistic regression analysis were applied to identify the predictive factors, which composed the nomogram. The receiver operating characteristic curves showed the efficacy of the nomogram.

RESULT

Multivariate logistic regression analyses revealed that age, race, tumor size, tumor primary site, and pathological grade were independent predictive factors of lymph node status. Integrating these independent predictive factors, a nomogram was successfully developed for predicting lymph node status, and further validated in the validation set. The areas under the receiver operating characteristic curves of the nomogram in the training and validation sets were 0.684 and 0.689 respectively, showing a satisfactory performance.

CONCLUSION

We constructed a nomogram to predict the lymph node status in TNBC patients. After further validation in additional large cohorts, the nomogram developed here would do better in predicting, providing more information for staging and treatment, and enabling tailored treatment in TNBC patients.

摘要

背景

三阴性乳腺癌(TNBC)的淋巴结转移在治疗策略制定中至关重要。本研究旨在构建一种预测TNBC患者淋巴结转移的列线图。

材料与方法

纳入2010年至2017年在监测、流行病学和最终结果(SEER)数据库中诊断的28966例TNBC患者,并将其按1:1随机分为训练集和验证集。采用单因素和多因素逻辑回归分析来确定构成列线图的预测因素。受试者工作特征曲线显示了列线图的效能。

结果

多因素逻辑回归分析显示,年龄、种族、肿瘤大小、肿瘤原发部位和病理分级是淋巴结状态的独立预测因素。整合这些独立预测因素,成功开发了一种用于预测淋巴结状态的列线图,并在验证集中进一步验证。该列线图在训练集和验证集的受试者工作特征曲线下面积分别为0.684和0.689,表现令人满意。

结论

我们构建了一种预测TNBC患者淋巴结状态的列线图。在更多大型队列中进一步验证后,此处开发的列线图在预测方面将表现得更好,为分期和治疗提供更多信息,并实现TNBC患者的个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/7747752/b787d33e8317/fonc-10-608334-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验