Gutiérrez-Rojas Ivonne, Moreno-Sarmiento Nubia, Montoya Dolly
Grupo de Bioprocesos y Bioprospección, Instituto de Biotecnología, Universidad Nacional de Colombia, Ciudad Universitaria, Edificio Manuel Ancizar, Bogotá, D. C., Colombia; Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D. C., Colombia.
Grupo de Bioprocesos y Bioprospección, Instituto de Biotecnología, Universidad Nacional de Colombia, Ciudad Universitaria, Edificio Manuel Ancizar, Bogotá, D. C., Colombia; Facultad de Ingeniería, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, D. C., Colombia.
Rev Iberoam Micol. 2015 Jan-Mar;32(1):1-12. doi: 10.1016/j.riam.2013.10.009. Epub 2014 Mar 7.
Cellulose is the most abundant renewable carbon source on earth. However, this polymer structure comprises a physical and chemical barrier for carbon access, which has limited its exploitation. In nature, only a few percentage of microorganisms may degrade this polymer by cellulase expression. Filamentous fungi are one of the most active and efficient groups among these microorganisms. This review describes similarities and differences between cellulase activity mechanisms and regulatory mechanisms controlling gene expression for 3 of the most studied cellulolytic filamentous fungi models: Trichoderma reesei, Aspergillus niger and Aspergillus nidulans, and the recently described model Neurospora crassa. Unlike gene expression mechanisms, it was found that enzymatic activity mechanisms are similar for all the studied models. Understanding the distinctive elements of each system is essential for the development of strategies for the improvement of cellulase production, either by providing the optimum environment (fermentation conditions) or increasing gene expression in these microorganisms by genetic engineering.
纤维素是地球上最丰富的可再生碳源。然而,这种聚合物结构构成了获取碳的物理和化学屏障,这限制了其开发利用。在自然界中,只有少数百分比的微生物能够通过表达纤维素酶来降解这种聚合物。丝状真菌是这些微生物中最活跃和高效的群体之一。本综述描述了3种研究最多的纤维素分解丝状真菌模型(里氏木霉、黑曲霉和构巢曲霉)以及最近描述的粗糙脉孢菌模型在纤维素酶活性机制和控制基因表达的调控机制方面的异同。与基因表达机制不同,研究发现所有研究模型的酶活性机制相似。了解每个系统的独特要素对于制定提高纤维素酶产量的策略至关重要,这些策略既可以通过提供最佳环境(发酵条件),也可以通过基因工程增加这些微生物中的基因表达来实现。