Thuss Simon J, Venkiteswaran Jason J, Schiff Sherry L
Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada.
PLoS One. 2014 Mar 7;9(3):e90641. doi: 10.1371/journal.pone.0090641. eCollection 2014.
Stable isotopes ([Formula: see text]15N and [Formula: see text]18O) of the greenhouse gas N2O provide information about the sources and processes leading to N2O production and emission from aquatic ecosystems to the atmosphere. In turn, this describes the fate of nitrogen in the aquatic environment since N2O is an obligate intermediate of denitrification and can be a by-product of nitrification. However, due to exchange with the atmosphere, the [Formula: see text] values at typical concentrations in aquatic ecosystems differ significantly from both the source of N2O and the N2O emitted to the atmosphere. A dynamic model, SIDNO, was developed to explore the relationship between the isotopic ratios of N2O, N2O source, and the emitted N2O. If the N2O production rate or isotopic ratios vary, then the N2O concentration and isotopic ratios may vary or be constant, not necessarily concomitantly, depending on the synchronicity of production rate and source isotopic ratios. Thus prima facie interpretation of patterns in dissolved N2O concentrations and isotopic ratios is difficult. The dynamic model may be used to correctly interpret diel field data and allows for the estimation of the gas exchange coefficient, N2O production rate, and the production-weighted [Formula: see text] values of the N2O source in aquatic ecosystems. Combining field data with these modelling efforts allows this critical piece of nitrogen cycling and N2O flux to the atmosphere to be assessed.
温室气体一氧化二氮(N₂O)的稳定同位素(¹⁵N和¹⁸O)提供了有关导致N₂O产生以及从水生生态系统排放到大气中的来源和过程的信息。反过来,这描述了氮在水生环境中的归宿,因为N₂O是反硝化作用的必要中间产物,并且可能是硝化作用的副产物。然而,由于与大气的交换,水生生态系统中典型浓度下的δ值与N₂O的来源以及排放到大气中的N₂O均存在显著差异。开发了一个动态模型SIDNO,以探索N₂O的同位素比率、N₂O来源与排放的N₂O之间的关系。如果N₂O的产生速率或同位素比率发生变化,那么N₂O的浓度和同位素比率可能会变化或保持恒定,但不一定是同步的,这取决于产生速率和来源同位素比率的同步性。因此,对溶解的N₂O浓度和同位素比率模式进行初步解释是困难的。该动态模型可用于正确解释昼夜现场数据,并能够估算气体交换系数、N₂O产生速率以及水生生态系统中N₂O来源的产生加权δ值。将现场数据与这些建模工作相结合,可以评估氮循环和N₂O向大气通量这一关键部分。