Suppr超能文献

接触性运动中与脑应变相关反应的头部撞击加速度:基于模型的研究。

Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation.

作者信息

Ji Songbai, Zhao Wei, Li Zhigang, McAllister Thomas W

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA,

出版信息

Biomech Model Mechanobiol. 2014 Oct;13(5):1121-36. doi: 10.1007/s10237-014-0562-z. Epub 2014 Mar 9.

Abstract

Both linear [Formula: see text] and rotational [Formula: see text] accelerations contribute to head impacts on the field in contact sports; however, they are often isolated in injury studies. It is critical to evaluate the feasibility of estimating brain responses using isolated instead of full degrees-of-freedom (DOFs) accelerations. In this study, we investigated the sensitivities of regional brain strain-related responses to resultant [Formula: see text] and [Formula: see text] as well as the relative contributions of these acceleration components to the responses via random sampling and linear regression using parameterized, triangulated head impacts with kinematic variable values based on on-field measurements. Two independently established and validated finite element models of the human head were employed to evaluate model-consistency and dependency in results: the Dartmouth Head Injury Model and Simulated Injury Monitor. For the majority of the brain, volume-weighted regional peak strain, strain rate, and von Mises stress accumulated from the simulation significantly correlated with the product of the magnitude and duration of [Formula: see text], or effectively, the rotational velocity, but not to [Formula: see text]. Responses from [Formula: see text]-only were comparable to the full-DOF counterparts especially when normalized by injury-causing thresholds (e.g., volume fractions of large differences virtually diminished (i.e., [Formula: see text]1 %) at typical difference percentage levels of 1-4 % on average). These model-consistent results support the inclusion of both rotational acceleration magnitude and duration into kinematics-based injury metrics and demonstrate the feasibility of estimating strain-related responses from isolated [Formula: see text] for analyses of strain-induced injury relevant to contact sports without significant loss of accuracy, especially for the cerebrum.

摘要

在接触性运动中,线性加速度[公式:见正文]和旋转加速度[公式:见正文]都会导致头部在赛场上受到撞击;然而,在损伤研究中它们常常被单独考虑。评估使用单独的而非全自由度(DOF)加速度来估计大脑反应的可行性至关重要。在本研究中,我们通过基于现场测量的运动学变量值进行参数化三角测量头部撞击,并通过随机抽样和线性回归,研究了区域脑应变相关反应对合成加速度[公式:见正文]和[公式:见正文]的敏感性,以及这些加速度分量对反应的相对贡献。我们使用了两个人体头部独立建立并验证的有限元模型来评估结果中的模型一致性和依赖性:达特茅斯头部损伤模型和模拟损伤监测器。对于大脑的大部分区域,模拟中累积的体积加权区域峰值应变、应变率和冯·米塞斯应力与[公式:见正文]大小和持续时间的乘积(实际上就是旋转速度)显著相关,但与[公式:见正文]无关。仅由[公式:见正文]引起的反应与全自由度对应的反应相当,尤其是当通过致伤阈值进行归一化时(例如,在平均1 - 4%的典型差异百分比水平下,大差异的体积分数实际上减小(即[公式:见正文]1%))。这些模型一致的结果支持将旋转加速度的大小和持续时间纳入基于运动学的损伤指标,并证明了从单独的[公式:见正文]估计应变相关反应以分析与接触性运动相关的应变诱导损伤的可行性,且不会显著损失准确性,尤其是对于大脑。

相似文献

1
Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation.
Biomech Model Mechanobiol. 2014 Oct;13(5):1121-36. doi: 10.1007/s10237-014-0562-z. Epub 2014 Mar 9.
2
A Pre-computed Brain Response Atlas for Instantaneous Strain Estimation in Contact Sports.
Ann Biomed Eng. 2015 Aug;43(8):1877-95. doi: 10.1007/s10439-014-1193-3. Epub 2014 Dec 2.
4
Every Newton Hertz: a macro to micro approach to investigating brain injury.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1123-6. doi: 10.1109/IEMBS.2009.5333423.
5
Mechanisms and variances of rotation-induced brain injury: a parametric investigation between head kinematics and brain strain.
Biomech Model Mechanobiol. 2020 Dec;19(6):2323-2341. doi: 10.1007/s10237-020-01341-4. Epub 2020 May 24.
6
Brain strains in vehicle impact tests.
Annu Proc Assoc Adv Automot Med. 2006;50:1-12.
7
Mild traumatic brain injury predictors based on angular accelerations during impacts.
Ann Biomed Eng. 2012 Jan;40(1):114-26. doi: 10.1007/s10439-011-0414-2. Epub 2011 Oct 13.
8
Voluntary Head Rotational Velocity and Implications for Brain Injury Risk Metrics.
J Neurotrauma. 2019 Apr 1;36(7):1125-1135. doi: 10.1089/neu.2016.4758. Epub 2018 Oct 22.
9
Finite element modelling of equestrian helmet impacts exposes the need to address rotational kinematics in future helmet designs.
Comput Methods Biomech Biomed Engin. 2011 Dec;14(12):1021-31. doi: 10.1080/10255842.2010.504922.
10
Time Window of Head Impact Kinematics Measurement for Calculation of Brain Strain and Strain Rate in American Football.
Ann Biomed Eng. 2021 Oct;49(10):2791-2804. doi: 10.1007/s10439-021-02821-z. Epub 2021 Jul 6.

引用本文的文献

1
Quantitative video analysis of head acceleration events: a review.
Front Bioeng Biotechnol. 2025 Aug 20;13:1658222. doi: 10.3389/fbioe.2025.1658222. eCollection 2025.
2
A Clinically Relevant Mouse Model of Concussion Incorporating High Rotational Forces.
Neurotrauma Rep. 2025 Feb 17;6(1):184-190. doi: 10.1089/neur.2024.0165. eCollection 2025.
3
Potential of Soft-Shelled Rugby Headgear to Lower Regional Brain Strain Metrics During Standard Drop Tests.
Sports Med Open. 2024 Sep 27;10(1):102. doi: 10.1186/s40798-024-00744-2.
4
On-field Head Acceleration Exposure Measurements Using Instrumented Mouthguards: Multi-stage Screening to Optimize Data Quality.
Ann Biomed Eng. 2024 Oct;52(10):2666-2677. doi: 10.1007/s10439-024-03592-z. Epub 2024 Aug 3.
5
The Impact of Drop Test Conditions on Brain Strain Location and Severity: A Novel Approach Using a Deep Learning Model.
Ann Biomed Eng. 2024 Aug;52(8):2234-2246. doi: 10.1007/s10439-024-03525-w. Epub 2024 May 13.
6
Efficient Generation of Pretraining Samples for Developing a Deep Learning Brain Injury Model via Transfer Learning.
Ann Biomed Eng. 2024 Oct;52(10):2726-2740. doi: 10.1007/s10439-023-03354-3. Epub 2023 Aug 29.
7
Design and characterization of 3-D printed hydrogel lattices with anisotropic mechanical properties.
J Mech Behav Biomed Mater. 2023 Feb;138:105652. doi: 10.1016/j.jmbbm.2023.105652. Epub 2023 Jan 2.
8
Drop Test Kinematics Using Varied Impact Surfaces and Head/Neck Configurations for Rugby Headgear Testing.
Ann Biomed Eng. 2022 Nov;50(11):1633-1647. doi: 10.1007/s10439-022-03045-5. Epub 2022 Aug 24.
9
Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports.
Ann Biomed Eng. 2022 Nov;50(11):1389-1408. doi: 10.1007/s10439-022-02999-w. Epub 2022 Jul 22.
10
American Football Helmet Effectiveness Against a Strain-Based Concussion Mechanism.
Ann Biomed Eng. 2022 Nov;50(11):1498-1509. doi: 10.1007/s10439-022-03005-z. Epub 2022 Jul 11.

本文引用的文献

1
Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion.
J Neurotrauma. 2015 Apr 1;32(7):441-54. doi: 10.1089/neu.2013.3268. Epub 2015 Feb 6.
2
A review of techniques for parameter sensitivity analysis of environmental models.
Environ Monit Assess. 1994 Sep;32(2):135-54. doi: 10.1007/BF00547132.
5
Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration.
Ann Biomed Eng. 2013 May;41(5):873-82. doi: 10.1007/s10439-012-0731-0. Epub 2013 Jan 9.
6
Head impact exposure sustained by football players on days of diagnosed concussion.
Med Sci Sports Exerc. 2013 Apr;45(4):737-46. doi: 10.1249/MSS.0b013e3182792ed7.
7
Modeling brain injury response for rotational velocities of varying directions and magnitudes.
Ann Biomed Eng. 2012 Sep;40(9):2005-18. doi: 10.1007/s10439-012-0553-0. Epub 2012 Mar 23.
8
Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football.
J Biomech. 2012 Apr 30;45(7):1265-72. doi: 10.1016/j.jbiomech.2012.01.034. Epub 2012 Feb 28.
9
Head impact exposure in youth football.
Ann Biomed Eng. 2012 Apr;40(4):976-81. doi: 10.1007/s10439-012-0530-7. Epub 2012 Feb 15.
10
Finite element analysis of the effect of loading curve shape on brain injury predictors.
J Biomech. 2012 Feb 23;45(4):679-83. doi: 10.1016/j.jbiomech.2011.12.005. Epub 2012 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验