Suppr超能文献

通过 PNP-Ir 或 PNN-Ru 钳式配合物介导的脱氢偶联进行直接吡咯合成的催化机制:PNP-Ir 体系中质子转移穿梭的关键作用。

Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP-Ir system.

机构信息

School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences , Beijing, 100049, China.

出版信息

J Am Chem Soc. 2014 Apr 2;136(13):4974-91. doi: 10.1021/ja411568a. Epub 2014 Mar 24.

Abstract

Kempe et al. and Milstein et al. have recently advanced the dehydrogenative coupling methodology to synthesize pyrroles from secondary alcohols (e.g., 3) and β-amino alcohols (e.g., 4), using PNP-Ir (1) and PNN-Ru (2) pincer complexes, respectively. We herein present a DFT study to characterize the catalytic mechanism of these reactions. After precatalyst activation to give active 1A/2A, the transformation proceeds via four stages: 1A/2A-catalyzed alcohol (3) dehydrogenation to give ketone (11), base-facilitated C-N coupling of 11 and 4 to form an imine-alcohol intermediate (18), base-promoted cyclization of 18, and catalyst regeneration via H2 release from 1R/2R. For alcohol dehydrogenations, the bifunctional double hydrogen-transfer pathway is more favorable than that via β-hydride elimination. Generally, proton-transfer (H-transfer) shuttles facilitate various H-transfer processes in both systems. Notwithstanding, H-transfer shuttles play a much more crucial role in the PNP-Ir system than in the PNN-Ru system. Without H-transfer shuttles, the key barriers up to 45.9 kcal/mol in PNP-Ir system are too high to be accessible, while the corresponding barriers (<32.0 kcal/mol) in PNN-Ru system are not unreachable. Another significant difference between the two systems is that the addition of alcohol to 1A giving an alkoxo complex is endergonic by 8.1 kcal/mol, whereas the addition to 2A is exergonic by 8.9 kcal/mol. The thermodynamic difference could be the main reason for PNP-Ir system requiring lower catalyst loading than the PNN-Ru system. We discuss how the differences are resulted in terms of electronic and geometric structures of the catalysts and how to use the features in catalyst development.

摘要

凯姆普尔等人和米尔斯坦等人最近推进了脱氢偶联方法,分别使用 PNP-Ir(1)和 PNN-Ru(2)钳形配合物,从仲醇(例如 3)和β-氨基醇(例如 4)合成吡咯。我们在此提出了一项 DFT 研究,以表征这些反应的催化机制。在前催化剂活化生成活性 1A/2A 后,该转化通过四个阶段进行:1A/2A 催化醇(3)脱氢生成酮(11),11 和 4 的碱基促进 C-N 偶联形成亚胺-醇中间体(18),18 的碱基促进环化,以及通过从 1R/2R 释放 H2 再生催化剂。对于醇脱氢,双功能双氢转移途径比通过β-氢消除途径更有利。通常,质子转移(H 转移)穿梭促进了两个体系中各种 H 转移过程。尽管如此,H 转移穿梭在 PNP-Ir 体系中比在 PNN-Ru 体系中起着更为关键的作用。没有 H 转移穿梭,PNP-Ir 体系中高达 45.9 kcal/mol 的关键障碍是无法达到的,而 PNN-Ru 体系中相应的障碍(<32.0 kcal/mol)并非无法达到。两个体系之间的另一个显著差异是,醇与 1A 加成生成烷氧基配合物是吸热的,吸热 8.1 kcal/mol,而与 2A 加成是放热的,放热 8.9 kcal/mol。热力学差异可能是 PNP-Ir 体系需要比 PNN-Ru 体系更低的催化剂负载量的主要原因。我们讨论了这些差异如何导致催化剂的电子和几何结构的差异,以及如何在催化剂开发中利用这些特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验