Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA.
Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0636, USA.
Curr Biol. 2014 Mar 17;24(6):621-9. doi: 10.1016/j.cub.2014.02.026. Epub 2014 Mar 6.
Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss-null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that SSS may regulate additional molecules to influence sleep.
Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs posttranscriptionally, since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs.
Together, our data point to an evolutionarily conserved, bifunctional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep.
尽管睡眠在进化过程中是保守的,但控制睡眠的分子基础在很大程度上仍然是一个谜。我们之前的研究表明,quiver/sleepless (qvr/sss) 基因编码一种膜结合蛋白,该蛋白对于果蝇的正常睡眠是必需的。SLEEPLESS (SSS) 蛋白的功能,至少部分是通过上调 Shaker (Sh) 钾通道的水平和开放概率来抑制神经元兴奋性并促进睡眠。与这一提出的机制一致,Sh 的功能丧失突变与 qvr/sss 缺失突变体具有相似的表型。然而,睡眠在 Sh 中的遗传可修饰性比在 qvr/sss 突变体中更强,这表明 SSS 可能调节其他分子来影响睡眠。
在这里,我们表明 SSS 还拮抗烟碱型乙酰胆碱受体 (nAChRs) 以减少突触传递并促进睡眠。用 nAChR 抑制剂美加明模拟这种拮抗作用,或用特定的 nAChR 亚基的 RNAi 敲低足以使 qvr/sss 突变体恢复睡眠。SSS 对 nAChR 活性的调节发生在转录后水平,因为 qvr/sss 突变体中的 nAChR mRNA 水平不变。SSS 对 nAChR 活性的调节实际上可能是直接的,因为 SSS 与 nAChR 形成稳定的复合物并拮抗其功能在转染细胞中。有趣的是,lynx1,SSS 的哺乳动物同源物,可以部分恢复 qvr/sss 突变体的正常睡眠,并且 lynx1 可以与 Shaker 型通道和 nAChRs 形成稳定的复合物。
总的来说,我们的数据表明 SSS 及其同源物在控制兴奋性和突触传递方面具有进化保守的、双重作用,这是神经系统基本过程如睡眠所必需的。